XVF3610 Voice Processor - User Guide

Release: 5.7.3
Publication Date: 2023/11/16

2MOS

Table of Contents

1

Introduction

TT OVEIVIEW . . L L
1.2 AudiOProCessiNg
1.3 Systeminterfaces
1.4 Booting and Initial configuration
1.5 Defaultoperation

Audio Processing Pipeline
2.1 Signal flow and processing
2.2 SignalRoutingand Scaling
2271 Routingcommands
222 Destinations
223 SOUICES . . . o o
224 Example Routing Commands
225 PACKED_ALL signals
2.3 General Purpose Filter
2.4 PDM microphoneinterface
2.5 Automatic Echo Cancellation (AEC)
2.6 Automatic Delay Estimation Control (ADEC)
2.7 Interferencecanceller
2.8 Noise Suppressor (NS)
2.9 Automatic Gain Control (AGC) and Loss Control, .
2.10 Alternative Architecture mode (ALT_ARCH)

System Interfaces

3.1 General Purpose Input and Output and Peripheral Bridging
32 GPIO .
3.3 General Purpose Inputs
3.4 General Purpose Outputs
3.5 1?C Master peripheral interface (XVF3610-UAONlY)
3.6 1°C Slave Control interface (XVF3610-INTonly)
3.7 UsingI?’C Mastertowritetoadevice
3.8 Usingthe I°C Mastertoread fromadevice
3.9 SPIMaSter

System Boot and Initial Configuration
47 BOOUPrOCESS.
42 Flashstorage structure
4.3 Programming the Factory Boot image and Data Partition
4.4 Upgrade Images and Data Partitions
4.5 Generation of Binary Upgrade Image
4.6 Addition of DFU Suffixto Binary files
47 Performing Firmware Updates
4.8 Factoryrestore
4.9 Boot Image and Data Partition Compatibility checks
410 Custom flash memory devices
410.1 Custom flash definition for factory programming
4.10.2 Custom flash definition for Data Partition generation
471 SPISIave BOOt
4111 SPIBoot of XVE36T10-INT
4712 SPIBoot of XVF36T10-UA
411.3 Implementing a SPI Boot host application.

412 Configuration and the Data Partition
4121 Data Partition file structure
4122 Itemfiles.
4.12.3 Generating a Data Partition for custom applications

Device operation

51 HostUtilities
511 Building the host utilities from sourcecode

52 Command-lineinterface (vfctrl)

53 wfctrlInstallation.

54 vfctrlsyntax e

5.5 Configurationvia Controlinterface
551 Controloperation
552 HostApplication
55.3 Device Application

56 Configurationvia Data Partition

USB Interface - (XVF3610-UA and XVF3610-UA-HYBRID only)

6.1 USBInterface

6.2 USB Configuration.

6.3 USBHIDInterface

6.4 HID Reportconfiguration

6.5 USBHIDreportformat

6.6 HIDreportgeneration
6.6.1 Configure GPIpINs
6.6.2 HIDmapalternation
6.6.3 Example of modifying default mapping between pinand HIDreport
0.6.4 HIDsequencer
6.6.5 Indefinite durationof HID setidle
6.6.6 Implementationof aslideswitch

6.7 Serial Number

6.8 USBdevice enumeration

Reference information

71 Basevfctrlcommandlist

7.2 Advanced vfctrlcommandlist

7.3 Boot status codes (RUN_STATUS)

7.4 Example SPISPEC file format

7.5 USBenumeration

7.6 General purposefilterexample
7.6 Specification
7.6.2 Worked Example

7.7 Command transport protocol
771 Transport protocol for control parameters L
7.7.2 Transporting control parametersover 12C
7.7.3 Transporting control parametersoverUSB
7.7.4 Floating point to fixed point (Q format) conversion

7.8 Flash programming and update flow

7.9 Capturing packed samples
7.9.1 Capturing all pipeline input and output signals over a 48kHz USB interface
7.9.2 Capturing all pipeline input and output signals over a 48kHz I°S interface
79.3 Packingspecificsignals

7.10 Directaccessto DSP Pipeline
7.10.7 Injecting a four-channel, 16kHz test vector into the DSP pipelineoverUSB
7.10.2 Injecting a four-channel, 16kHz test vector into the DSP pipeline over 12S
7.10.3 Injecting a four-channel packed input and capturing a six-channel packed output

Steps for XVE3610-UA o
Steps for XVF3610-UA-HYBRID

Steps for XVF3610-INT

XVF3610 Voice Processor - User Guide

The XMOS VocalFusion® XVF3610 User Guide is written for system architects and engineers designing Far-
fleld voice systems using the XVF3610 voice processor. The document describes typical usage models,
the processor architecture, key feature operation, and interface definitions. In conjunction with the prod-
uct datasheet, these two documents provide all the information required for system design, from concept to
production testing and verification.

Itis expected that this document is read in conjunction with the relevant datasheet and that the user is familiar
with basic voice processing terminology.

Note: This issue of the user guide covers the functionality supported by version 5.7 and release 5.7.3 of the
VocalFusion® XVF3610 application firmware.

T Introduction

The XMOS VocalFusion® XVF3610 voice processor uses microphone array processing to capture clear, high-
quality audio from anywhere in the room. XVF3610 processors use highly optimised digital signal processing
algorithms to implement ‘barge-in’', suppress point noise sources and reduce ambient noise levels increasing
the effective Signal to Noise Ratio (SNR) to achieve a reliable voice interface whatever the environment.

1.1 Overview

The processor is designed for seamless integration into consumer electronic products requiring voice in-
terfaces for Automatic Speech Recognition (ASR), or communication and conferencing. In addition to the
class-leading voice processing, XVF3610 processor implements specific features and interfaces required for
use in closely integrated applications such as those incorporated into a TV or set-top box.

Three variants of the XVF3610 are available:
+ XVF3610-UA (U-SB A-ccessory) - Audio and control via a USB2.0 interface

- XVF3610-UA-HYBRID (U-SB A-ccessory HYBRID) - Audio from the host via 1S and audio to the host,
and control via a USB2.0 interface

+ XVF3610-INT (INT-egrated) - Audio via I°S and control over I2C interfaces
The functional block diagram of the XVF3610 is shown in the figures below:

MCLK QsPi GPIO 12C SPI 125
WMok MCLK OUT Flash User configurable Master Master pemmmmmmmmmemees \
| (with host control) Master
1125 Stereo audio
Peripheral Interfaces et
+—HID—— HID Controller
+—USE Cli—» USB Control Audio Processing Pipeling ASR Comms
Control
weo cnannel ASR output
ic 1 channel [. .
PDM Digital Dﬁ 4% Microshane ASR—| Rate conversion
Lb — {1BKSPS to
mic . Dual G | Channel 0 5 -
Mic Shift ual General Quad [—Comms-»| 48/1BkSPS)
Purpose Filters i Output
- R
PDM Digital D—i—bb— Sweh Filtors.
mic Comms ——ASR—® Rate conversion
Rate | | . (13KSPS to
i Stereo General Reference output)
lconversion —» 8/ s)
— = Purpose Filters (Stereo) channel [Cemms A816kSPS)
18k5PS3) Input [|
Crossbar ASR Comms
Switch
AEC Ref
USB Interface HID le—riD—
Stereo Reference Audio Cirl le—USE Ctri—e
USB Audio UAC1.0, 16/48 kSPS, Adaptive
Stereo in | f————--p HID Events
Stereo out End-point 0 Control Audio (2 ch)

Fig. 1.1: Functional block diagram of XVF3610 in UA configuration

XVF3610 Voice Processor - User Guide

MCLK QsPl GPIO 2C SPI 125
MGLK MCLK OUT Flash User configurable Master Master = peemmmmememmeeeon
] (with host contral) : Master
1128 Stereo audio
Peripheral Interfaces et
#+—HID—— HID Controller +—stereo AEC Ref- J
+—USB Cui—» USB Contral Audio Processing Pipeline ASR Comms
Control
ke 0 channel ASR output
channel
PDM Digital D—i—FD—L Microphene SR—|Rate conversion
mic Dusl G " Channel 0 (16KSPS 10
Mic Shitt ual General Quad [—Comms—» 4816KSPS)
e Purpose Filters Microphane cﬂnm:l General
rossbar
PDM Digital D—i—rb——r' Chennel 1 ‘Switeh Purpose
mic Comms SR Rate conversion
Rate ' |— Stereo General Reference :‘“F’“: | commesl ‘::f;:sp;
askspPs o | O Purpose Filters (Sterea) ohannel | :
16KSPS)
C::::htar ASR Comms
Switch
stereo AEC Ref
USB Interface HID |—HID .
Cirl [—USB Gtr—e
USB Audio UAC1.0, 16/48 kSPS, Adaptive
Stereo out {— HID Events
End-point 0 Control Audio (2 ch)
Fig. 1.2: Functional block diagram of XVF3610 in UA-HYBRID configuration
MCLK 12C QsPl GPIO SP1 128
MCLK MCLE_IN Slave Flash User configurable Master ~ reeeeemeemmeeeeen
|—] (with host control) : Slave
1125 Stereo audio
Peripheral Interfaces loeemeoeeoo
Controller +—sterso AEC Ref J
Audio Processing Pipeline
ASR GComms
Control
e o channel ASR output
ic channal .
PDM Digital E>—7—>D——|_> Microphone [—ASR—® Rate conversion
) (15K55S o
mie o shi Dual General Channel 0 (19ksPs o
Mic Shift ual Genera Quad [—Comms» 43/16kSPS)
i Purpose Filters Microphone Output General
Mic 1 _l—b Channe! 1 Crosshar
PDM Digital D—i—»D— anne suieh Titers.
mic Rt Comms
ate e ..
lconversion Stereo General Reference output
foerot | O Purpose Filters (Stereo) channel
184SPS) Input
Crossbar
Switch

sterec AECRef

Fig. 1.3: Functional block diagram of XVF3610 in INT configuration

1.2 Audio processing

The VocalFusion® XVF3610 voice processor converts and enhances audio captured using a pair of low-cost
digital microphones. Processed audio streams are suitable for use in Automatic Speech Recognition (ASR)
or voice communications applications and benefit from a range of configurable audio processing techniques
to allow customisation to the use case. The embedded audio processing provides the following features:

+ 2 microphone far-field operation.

« Full 360-degree operation in “coffee table” applications or 180-degree for operation in edge-of-room
products such as smart TVs.

+ 16kHz voice processing, with optional 16kHz and 48kHz interface sample rates.

XVF3610 Voice Processor - User Guide

+ Full duplex, Stereo, Acoustic Echo cancellation with a maximum tail length of 225ms accommodating
highly reverberant environments. The reference audio for cancellation can be provided via an 12S Slave
interface (INT variant), I2S Master interface (UA-HYBRID variant) or via USB (UA variant).

+ Automatic bulk delay insertion, of up to 150ms, to account for positive or negative reference audio
delays ensuring optimal echo cancellation with all audio output paths.

+ Cancellation of point noise sources via a 256-frequency band Interference Canceller.
+ Switchable stationary noise suppressor.

+ Adjustable gain over a 60dB range with automatic gain control.

+ Audio output filtering and range limiter.

+ Independent audio processing paths and control of parameters for communications and ASR audio.

1.3 System Interfaces

The VocalFusion® XVF3610 voice processor provides the following additional interfaces to increase usability
and reduce total system cost:

+ 4 General Purpose Output pins. These can be configured as simple digital I/0 pins, Pulse Width Modu-
lated (PWM) outputs and rate adjustable LED flashers.

+ 4 General Purpose Input pins. These can be used as simple logic inputs or event capture (edge detec-
tion).

+ SPI Master interface to control and interrogate an SPI Slave device, such as ADCs, DACs or external
keyword detection devices.

1.4 Booting and Initial configuration

The VocalFusion® XVF3610 voice processor can be booted over SPI by a local host processor or from a
separate, user-supplied, QSPI Flash memory. When operating with flash, the memory can be used for the
following functions:

+ A default firmware image for power-on operation.

+ An upgrade image that is transferred via I°C or USB using a host-controlled upgrade process for over-
the-air device management.

+ A persistent user information space to allow user-configured data such as board identifiers and serial
numbers to be maintained across multiple firmware upgrade cycles.

+ An upgradable user command space. Commands stored in this space are executed at boot time allow-
ing the definition of start-up behaviour, VocalFusion® XVF3610 configuration and setup of SPI peripheral
devices connected to it.

With the exception of the persistent user information, the contents of the flash, and therefore the configuration
of the system, can be upgraded and configured using the Device Firmware Upgrade (DFU) mechanism from
the host processor.

Note: The three XVF3610 variants; one providing 12S/12C interface (XVF3610-INT) and two providing a USB
interface (XVF3610-UA and XVF3610-UA-HYBRID) are delivered as separate sets of firmware.

Note: Unless otherwise stated, throughout the remainder of this document, the term XVF3610-UA will refer
to both the UA and UA-HYBRID variants.

XVF3610 Voice Processor - User Guide

1.5 Default operation

The following table details the default configuration for the XVF3610-UA and XVF3610-INT firmware version
5.7 after firmware update to the default configuration.

Table 1.1: Default configuration of XVF3610

Parameter Default UA and UA- Default INT Can Configure?
HYBRID
Version (x=patch version) 5.7.x 5.7.x N

Reference input FROM host

USB UAC 1.0 48k sam-
ples/s PCM 16-bit reso-
lution

IS Slave 48k samples/s
PCM 32-bit resolution

Y (prior to micro-
phone and I2S
start up

Reference format

T or 2 channel (Mono /
Stereo)

1 or 2 channel (Mono /
Stereo)

N

Processed audio output TO
host

USB UAC 1.0 48k sam-
ples/s PCM 16-bit reso-

I’S bus 48k samples/s
PCM 32-bit resolution

Y (prior to micro-
phone and I?S

lution start up
Audio format to host 2 channel - two differ- 2 channel - two differ- Y
ent streams CH[0] - ASR ent streams CH[0] - ASR
CH[1] - Comms CH[1] - Comms
USB Product String XVF3610 (UACT1.0) N/A Y
Adaptive
USB Vendor ID 0x20B1(8369) N/A Y
USB Product ID 0x0016 (22) N/A Y
USB Vendor String XMOS N/A Y
USB Serial Number null N/A Y
I”C address N/A 0X2C N
MCLK 24.576MHz OUTPUT 24.576MHz INPUT Y
Acoustic Echo Canceller Enabled Enabled Y
Automatic Delay Estimator Activated once on Activated once on Y
startup startup
Interference Canceller Enabled Enabled Y
Noise suppressor Enabled Enabled Y

2 Audio Processing Pipeline

The core of the XVF3610 voice processor is a high-performance audio processing pipeline that takes its input
from a pair of the microphone and executes a series of signal processing algorithms to extract a voice signal
from a complex soundscape. The audio pipeline can accept a reference signal from a host system which
is used to perform Acoustic Echo Cancellation (AEC) to remove audio being played by the host. The audio
pipeline provides two different output channels - one that is optimized for Automatic Speech Recognition
systems and the other for voice communications.

A flexible audio signal routing infrastructure and a range of digital inputs and outputs enables the XVF3610
to be integrated into a wide range of system configurations, that can be configured at start up and during
operation through a set of control registers.

2.1 Signal flow and processing

The arrangement of the blocks, with respect to the device Input & Output and the XVF3610 audio processing
pipeline, is shown below:

PIPELINE_OUT_0

PIFELINE_OUT_1
USB_TO_DEVICE 0
USB_TO_DEVICE 0 USB_TO_DEVICE 1
USB_TO_DEVICE 1 125_TO_DEVICE D
125_TO_DEVICE 0 125 _TO_DEVICE 1
125_TO_DEVICE 1 MIC_IN_D"
USB_TO_DEVICE_AVERAGE MIC_IN_1"
USB_TO DEVICE_DIFFERENCE USB_TO_DEVICE_AVERAGE
125 _TO_DEVICE _AVERAGE USB_TO _DEVICE_DIFFERENCE
125_TO_DEVICE_DIFFERENGE 125_TO_DEVICE_AVERAGE
MUTE 125_TO_DEVICE_DIFFERENGE
MUTE

USB FROM ! 1 i
HOST . 7] o !
16/48kHz 5 Ef !
- 2 ’
' @ || B & = % |
' —] I i
: zl 3 DSP PIPELINE i | ussTo
: ol @ 16kHz sample rate 2| = i HosT
& o 3 = Z]| 16MBkH:
I s 2 2| & g
5 ' @ * REFERENGE @ '
1S FROM __! & PIPELINE | 3 g '
HOST] 3 QUTPUT [3 !
16/48kHz ~ ! O MUXES :
' 1
MIC INPUT — i
5 AUDIO INPUT & |
' 3 !
' 1
PDM ! g | = =7
MICS ! oy] W [! 5
= 2 o : 125 TO
] } g 16K Or 48KHz version of the al & ; HOST
Decimate Filter signal ls automatically selected | & = = || 16MBkHz
. by the output muxes g = E M
' = dapanding on output sample rate a :
1= & i
|)ofoesmac > ; : ;
'
'
'
'
:

Fig. 2.1: XVF3610 input, output and audio signal routing

XVF3610 Voice Processor - User Guide

The blocks supported are as follows:

- Signal Multiplexers. These allow dynamic selection (switching) of signals. The signals available depend
on the multiplexer position.

- Gain Blocks. These are blocks that apply a variable bit shift (left or right) and, in the case of left shift,
saturate in the case of overflow. Because they are shifters, the gain applied is a power of two.

« Filter Blocks. The filter blocks consist of two cascaded biquad units. Each of the five coefficients per
stage is directly manipulated via the control utility.

The commands to control the audio multiplexes (Mux) blocks and the source and destination index numbers
are listed in the following sections.

The XVF3610 provides a flexible routing control scheme to configure signal routing through the pipeline itself,
providing flexibility useful in:

+ Hardware testing of microphones by monitoring the raw microphone signal.

+ Improving pipeline performance by filtering known noise sources at the raw microphone input.

+ Monitoring and debugging of reference signals and microphone signals during development.

+ Compensating for gain offset in the reference signal.

« Supporting specific audio connectivity requirements such as obtaining the reference signal from 12S.

« Inserting audio filtering where a loudspeaker is connected downstream of the XVF3610 via I2S.

2.2 Signal Routing and Scaling

2.2.1 Routing commands
The following controls are provided for configuring the signal control blocks.

Table 2.1: 10 Mapping commands

Command Type Args Definition

SET_IO_MAP uint8 2 Configures the two input switches and four output
switches. See Destination and Source index table for
valid argument options. arg1<Destination Index>-arg2
<Source Index>

SET_OUTPUT_SHIFT int32 2 Sets the gain for each mux block. Select mux block
Destination Index followed by shift (+ve is left -ve is
right shift). argl <Destination Index> - arg2 <shift

value>

GET_OUTPUT_SHIFT uint32 8x3 Get all IO_MAP and OUTPUT_SHIFT values for all des-
tinations.

SET_MIC_SHIFT_SATURATE / uint32 2 Sets the gain on the raw mic signals before entering the

GET_MIC_SHIFT_SATURATE Pipeline. arg1 <shift value (left shift)> - arg2 <saturate -
enable if =1>

2.2.2 Destinations

XVF3610 Voice Processor - User Guide

The Destination channels available to be mapped are referenced as follows:

Table 2.2: Mapping Destination Indexes

Channel (Destination) Value Definition

USB_FROM_DEVICE_Q 0 USB channel 0 output from device to host
USB_FROM_DEVICE_1 1 USB channel 1 output from device to host
I2S_FROM_DEVICE_OQ 2 I2S channel 0 output from device
I2S_FROM_DEVICE_1 3 I2S channel T output from device
REF_TO_PIPELINE_O 4 reference channel 0 going into the pipeline
REF_TO_PIPELINE_1 5 reference channel 1 going into the pipeline
MIC_TO_PIPELINE_O 6 microphone channel 0 going into the pipeline
MIC_TO_PIPELINE_1 7 microphone channel 1 going into the pipeline

2.2.3 Sources

Sources available to be mapped to destinations are referenced as follows:

Table 2.3: 1/0 Mapping Source Indexes

Channel (Source) Value Definition

MUTE 0 Zeros are sent to the destination if this value is selected -
which mutes the channel

USB_TO_DEVICE_AVERAGE 1 Average of USB input from host to device

USB_TO_DEVICE_DIFFERENCE 2 Half of the difference between ch0 and ch1 of USB input
from host to device

I12S_TO_DEVICE_AVERAGE 3 Average of IS input to device

I12S_TO_DEVICE_DIFFERENCE 4 Half of the difference between chO and ch1 of I”S input to
device

PIPELINE_OUT_0 5 Pipeline output channel 0

PIPELINE_OUT_T 6 Pipeline output channel 1

USB_TO_DEVICE_O 7 USB input channel 0 from host to device

USB_TO_DEVICE_T1 8 USB input channel 1 from host to device

12S_TO_DEVICE_O 9 I2S input channel 0 to device

12S_TO_DEVICE_T 10 I”S input channel 1 to device

MIC_IN_O 1 Ch0 Microphone input seen by the pipeline

MIC_IN_T 12 Ch1 Microphone input seen by the pipeline

PACKED_PIPELINE_QUTPUT 13 pack 16kHz pipeline output on 48kHz output

PACKED_MIC 14 pack 16kHz mic input to pipeline on 48kHz output

PACKED_REF 15 pack 16kHz reference input to pipeline on 48kHz output

PACKED_ALL 16 pack T channel of 16kHz mic - reference input and pipeline.
When this option is used the other channel of the same out-
put also gets PACKED_ALL set in its 10 map

PACKED_ALL_INPUT_USB 17 pack 16kHz mic and reference into a 48kHz USB input

PACKED_ALL_INPUT_I2Z2S 18 pack 16kHz mic and reference into a 48kHz IS input

Note: The MIC_IN_O and MIC_IN_1 signals are at 16kHz. If they are routed to a 48kHz output they will be
sample repeated three times. No antialiasing filter is applied.

XVF3610 Voice Processor - User Guide

2.2.4 Example Routing Commands

The following section illustrates how to use the |10 mapping and scaling commands.

Using the SET_I0_MAP command, the user can choose the sources that get routed to the following 3 destina-
tions:

+ the USB output from device to host
- the I°S output from the device
- the reference going into the device

For instance, to route 12S channel 0 (= 9 as shown in the Source table) input to the device to USB channel 1
output from the device (= 1 as shown in the destination table), the command is:

vfctrl_usb SET_IO_MAP 1 9

where the first argument “1" refers to USB_FROM_DEVICE_1 as shown in the destination table and the second
argument “9” refers to 12S_TO_DEVICE_O in the source table.

Signal routing is also useful for hardware debugging of microphone or reference signal connection. As an
example, the following command routes USB reference channel 0 from host to the USB audio output channel
0 of the XVF3610:

victrl_usb SET_IO_MAP 0 7

This command sets a loopback of the reference signal given to the XVF3610 to its audio output. By playing a
simple reference signal, e.g., a sine wave, the user can verify if the XVF3610 has received the signal properly
through its audio output. If the audio signal recorded at host is different from the reference output, the user
may check if the problem is caused by hardware connection failure or wrong data format.

Signal routing can also be used for debugging microphone signal:

victrl_usb SET_IO_MAP 1 12

The above command routes microphone channel 1 as the direct signal to the USB audio output of the
XVF3610. Microphone signals can then be verified by recording the audio output from the XVF3610.

For XVF3610-UA, its I°S Master interface can be used for sending out different signals as shown in the source
channel table while having the USB output processed audio. For example, the following command configures
the XVF3610 to send microphone, reference and pipeline outputs in 16kHz sampling frequency packed to
48kHz I°S output:

victrl_usb SET_IO_MAP 2 16
victrl_usb SET_IO_MAP 3 16

By using Raspberry Pi with I°S Slave interface configured, the user can then capture synchronized signals of
microphone, reference and pipeline output. Observing these signals can be very useful for debugging. The
packed signal can be unpacked to mic, reference and pipeline signal with 2 channels in each of them by using
a Python script provided in the Release Package.

XVF3610 Voice Processor - User Guide

The SET_OUTPUT_SHIFT command can be used to specify a bit shift that is applied to all samples of a given
target. For example, specifying:

victrl_usb SET_OUTPUT_SHIFT 2 4

applies a left shift of 4 bits on all samples output from the device on 12S channel 0 as 24=16x of gain. A
negative shift value would imply a right bit shift for attenuation.

The GET_IO_MAP_AND_SHIFT command displays the |0 mapping and the shift values for all targets.

Executing a GET_I0_MAP_AND_SHIFT command without having set any mapping or shifts explicitly shows the
default mapping that is configured in firmware:

victrl_usb GET_IO_MAP_AND_SHIFT

GET_IO_MAP_AND_SHIFT:

target: USB_FROM_DEVICE_O, source: PIPELINE_OUT_O output shift: NONE
target: USB_FROM_DEVICE_1, source: PIPELINE_OUT_1 output shift: NONE
target: I2S_FROM_DEVICE_O, source: PIPELINE_OUT_O output shift: NONE
target: I2S_FROM_DEVICE_1, source: FAR_END_IN_O output shift: NONE
target: REF_TO_PIPELINE_O, source: USB_TO_DEVICE_O output shift: NONE
target: REF_TO_PIPELINE_1, source: USB_TO_DEVICE_1 output shift: NONE

2.2.5 PACKED_ALL signals

PACKED_ALL packs up to six 16kHz channels into a 48kHz stereo signal. When using USB (UA) firmware it
uses the bit resolution of the USB output interface (even if you output to I°S on the UA device) and always
assumes 32b it you are using 12S since the I°S interface uses a fixed 32b bit width. The packing sequence is
as follows:

Table 2.4: Packed audio channels

16kHz channel PACKED_ALL input PACKED_ALL output

0 MIC 1 MIC 1

1 MIC O MIC O

2 REF left REF left

3 REF right REF right

4 unused (ignored) ASR pipeline output

5 unused (ignored) Comms pipeline output

Single 18kHz multi-channel frame

L.
L

(;____._.—-——7-— Isb marker —-—_\i

A

mic 1 1 ref L ﬂl don't care 0
mic 0 1 ref R ﬂl don't care 0

Three 48kHz stereo frames

Fig. 2.2: Packing sequence

10 y,

XVF3610 Voice Processor - User Guide

1. Microphone samples with marker ‘1" in least significant bit
2. Reference samples with marker ‘0" in least significant bit
3. Pipeline out sample with marker ‘0" in least significant bit

The packer_packed_all.py script masks off the least significant bit and inserts the packing marker sequence,
as well as changing the output format to 48kHz stereo. It can support 16, 24 or 32b resolution although
24b files are saved and read as 32b with 8b LSB padding. It can work on a MacQOS if you use a 16b or 24b
output resolution on the USB interface. Since microphone signal levels are quite low from the output of the
decimators, it is recommended to use at least 24b resolution to keep the quantisation noise floor down with
respect to signal.

The unpacker_packed_all.pyscript looks for 0, 0, 1 for the LS bit to check for a PACKED_ALL sequence, else it
will report an error. It will try to recover from sequence errors if present. The packing will work with 16b, 24b
and 32b sample bit widths although <=24b is recommended.

For more information and use cases for the packed audio please refer to Capturing Packed Samples and Direct
access to DSP Pipeline sections.

2.3 General Purpose Filter

The General Purpose filter blocks each comprise of two cascade biquad filters permitting configuration as
bandpass, notch, low-pass, high-pass filters etc. By default, all filters are disabled (bypassed).

Note: A maximum of two output filters may be enabled simultaneously. E.g. Two channels of USB filtering
or one 1S and one USB output. Exceeding this may cause audio glitching.

There is no restriction on input filters (microphone and reference filters).

The filter coefficients are accepted in a floating-point or decimal format in al, a2, b0, b1, b2 order directly from
filter design tools such as https://arachnoid.com/BiQuadDesigner/index.html. These values are described as
float in the rest of this section.

Support for the raw 32bit integer write/read is offered which directly accesses the internal representation.
When using the raw control method, coefficients should be converted to Q28.4 format first and a; and a,
need to be negated. See the O format conversion section and Filter configuration parameters table for more
information.

The sample rate for filters on the input to the pipeline are always 16kHz whereas the output filters match
the selected rate which may be either 16 or 48kHz, depending on system configuration. Ensure that the filter
coefficients have been designed with the correct rate.

Note: Although potential numerical overflows are handled as a saturation, it is up to the designer to ensure no
saturation occurs from the coefficients chosen to avoid non-linear behaviour of the filter. The implementation
offers three bits of headroom (Q28.4) which is more than sufficient for most filters.

The coefficients are cleared to zero on boot.

The following table describes the commands for the configuration of the filters.

1 y,

https://arachnoid.com/BiQuadDesigner/index.html

XVF3610 Voice Processor - User Guide

Table 2.5: Filter configuration parameters

Command Type Argu- Definition
ments

SET_FILTER_INDEX uint8 1 Used as an index to point to the filter block that will be
manipulated. The table below defines the filter block
IDs.

GET_FILTER_INDEX uint8 1 Retrieve the current filter index.

SET_FITER_BYPASS uint8 1 Bypass (1) means filter pointed to by the index is not
enabled (default) - 0 means enable the filter.

GET_FILTER_BYPASS uint8 1 Retrieve the bypass status.

SET_FILTER_COEFF float 10(5x2) Set5x 2 biquad coefficients in a floating-point format

in the order a1 a2 b0 b1b2. Coefficient a0 is assumed
to be 1.0. If it is not - divide all coefficients by aO0.

GET_FILTER_COEFF float 10(5x2) Retrieve the floating-point representation of the coef-
ficients in the order a1 a2 b0 b1 b2.
SET_FILTER_COEFF_RAW int32 10(5x2) Set 5 x 2 biquad coefficients in Q28.4 format for the

filter pointed to by the index. More information about
the format is available in the General Purpose Filter
section.

GET_FILTER_COEFF_RAW int32 10(5x2) Retrieve the Q28.4 representation of the coefficients.
More information about the format is available in the
General Purpose Filter section.

section.

Filter output indexes available to be used with filter setting commands (output_filter_map_t):

Table 2.6: Output Indexes

Channel Value Definition

FILTER_USB_FROM_DEVICE_O 0 USB channel 0 from device to host (Left)

FILTER_USB_FROM_DEVICE_1 1 USB channel 1 from device to host (Right)

FILTER_I2S_FROM_DEVICE_0 2 IS channel 0 from device (Left)

FILTER_I2S_FROM_DEVICE_1 3 I”S channel T output from device (Right)

FILTER_MIC_TO_PIPELINE_O 4 16kHz mic channel 0 going into the pipeline

FILTER_MIC_TO_PIPELINE_1 5 16kHz mic channel 1 going into the pipeline

FILTER_REF_TO_PIPELINE_T 6 16kHz reference channel 0 going into the pipeline
(Left)

FILTER_REF_TO_PIPELINE_1 7 16kHz reference channel 1 going into the pipeline
(Right)

Note: While setting the index or bypass control will always be safe, there is a small chance that the coef-
ficients may be partially updated halfway through a filter operation. For this reason, the filter state is also
cleared following updating to ensure that any possibility of instability is reduced. It is up to the user to ensure
that the coefficients provided result in a stable filter configuration.

A worked example is provided in the Reference information section.

12 y,

XVF3610 Voice Processor - User Guide

2.4 PDM microphone interface

The PDM microphone interface converts Pulse Density Modulation (PDM) audio input from the microphones
to Pulse Code Modulation (PCM) format allowing further processing. The PDM microphone interface consists
of the physical pins connecting to the two microphones and a series of filters resulting in a 16kHz PCM, two-
channel output stream suitable for far-field voice processing. Please refer to the datasheet for the physical
and electrical details of the PDM pins.

The processing consists of four filter stages:
+ Decimate by 8 FIR filter to 384kHz
+ Decimate by 4 FIR filter to 96kHz
+ Decimate by 6 FIR filter to 16kHz
+ DC Blocking, single-pole IIR filter

@—L Decimate by 8 Decimate by 4 Decimate by & DC Blocking Il-’

Fig. 2.3: PDM microphone processing steps

The PDM microphone interface uses 32-bit internal processing to provide very low distortion with a specifi-
cation exceeding -110dB THD+N with a 140dB dynamic range.

The frequency response of the FIR filter has a stopband attenuation of at least 70dB with a passband ripple
of less than 0.9dB and a passband of 6.8kHz. The total group delay from pin to the XVF3610 audio pipeline
input is 1.125 milliseconds.

A DC blocking filter is placed at the end of the PDM microphone interface pipeline and is tuned to have a 5Hz
-6dB point and removes any DC offset present in the PDM input.

The output from the PDM microphone interface may optionally be shifted or attenuated providing a power-of-
two gain control. Saturation may be applied in the case that the gain is greater than one. These settings can
be updated with the control command SET_MIC_SHIFT_SATURATE. More details about this command can be
found in the table below.

By default, the gain block shift is set to zero (a gain of 2° = 1) and this is the recommended setting for normal
use.

The PDM interface control parameters are shown below:

Table 2.7: Microphone commands

Command Type Value Description

SET_MIC_SHIFT_SATURATE uint32 argl <shift value (left shift)> Write the gain (power of
arg? <saturate - enable if I=0> 2) on the raw mic signals
before entering the audio
pipeline.
GET_MIC_SHIFT_SATURATE uint32 Read the gain (power of 2)
on the raw mic and Satu-
rate Enable signals before
entering the audio pipeline.

13 y,

XVF3610 Voice Processor - User Guide

2.5 Automatic Echo Cancellation (AEC)

This process uses the stereo audio from the product as a reference signal to model the echo characteristics
between each loudspeaker and microphone, caused by the acoustic environment of the device and room.

The AEC uses four models to continuously remove echoes in the microphone audio input created in the room
by the loudspeakers. The models continually adapt to the acoustic environment to accommmodate changes
in the room created by events such as doors opening or closing and people moving about.

An illustration of echo paths in two sizes of room are shown below.

1==J» Direct Path '
i—» Short Echo Path |
Small Room i~ Long Echo Path | Larger Room
.:. !. -' :;: Y
£k It '
[1 i | |

1.5m H 1 |§

XVF361x P ;
: ¥y ¥ v

Fig. 2.4: Echo paths from the speakers to the microphones

After reset, or when echo paths change due to a change in the environment, the AEC will re-converge. Echo
Return Loss Enhancement (ERLE) can be used to indicate the degree of convergence on the AEC filters as
shown below.

14 y,

15

ERLE (dB)

XVF3610 Voice Processor - User Guide

AEC ERLE over Time with an Environment Change

I

AEC Settled

Device Reset

I

AEC Settled

|

Environment Change

Time (s)

Fig. 2.5: Settling time of the AEC shown using an ERLE plot

XVF3610 Voice Processor - User Guide

For optimal AEC settling-time performance, the volume of the loudspeakers must be linearly proportional
to the level of the reference audio sent to the XVF3610. If the volume of the loudspeakers changes without
the level of the reference changing by the same linear factor, the AEC will respond as if the environment has
changed such that all echo paths have increased/decreased energy. The AEC will therefore incur a settling
time.

The Alternative Architecture (described in the Alternative Architecture mode (ALT_ARCH) section) selectively
extends the AEC filters to accommodate highly reverberant environments.

The configuration parameters for the AEC are shown below:

Table 2.8: Useful Automatic Echo Canceller (AEC) commands

Command Type Value Description Notes

GET_BYPASS_AEC / SET_BYPASS_AEC uint32 [0-1] Get/ set AEC bypass parame- A
ter. If set to one AEC process-

ing is disabled
GET_ADAPTATION_CONFIG_AEC / uint32 [0-2] Get / set AEC adaptationcon- B
SET_ADAPTATION_CONFIG_AEC figuration: 0 = Auto adapt (de-

fault) 1= Force adaptation ON
2 = Force adaptation OFF. If
AEC is set to bypass then set-
ting the adaptation config has

no effect
GET_ERLE_CHO_AEC float Get AEC ERLE for channel O
GET_ERLE_CH1_AEC float Get AEC ERLE for channel 1 C
RESET_FILTER_AEC This command resets all AEC
filters

Notes:

[A] When the Alternative Architecture (ALT_ARCH) mode is enabled (default), AEC bypass state will be over-
written and so should not be used. The GET command remains functional. For more information see the
Alternative Architecture (ALT_ARCH) section.

[B] If Automatic Delay Estimation is enabled, these parameters will be overwritten and so should not be used.
The GET commands remain functional. For more information see the Automatic Delay Estimation Control
(ADEC) section.

[C] When the ALT_ARCH mode is enabled, there is only valid ERLE data available on CHO. In this mode the
GET_ERLE_CH1_AEC will report NaN.

Note: The AEC operates on acoustic paths modelled in the AEC tail length. The Automatic Delay Estima-
tion Control module handles delays between microphone and loudspeaker introduced by the equipment, for
instance receiving the reference ahead of it actually being played out of the loudspeakers.

2.6 Automatic Delay Estimation Control (ADEC)

The ADEC module automatically corrects for possible delay offsets between the reference and the loudspeak-
ers.

Echo cancellation is an adaptive filtering process which compares the reference audio to that received from
the microphones. It models the reverberant time of a room, i.e. the time it takes for acoustic reflections to
decay to insignificance. This is shown in the figure below (the red “Acoustic echo path delay”).

16 y,

XVF3610 Voice Processor - User Guide

AN,
\ -
A A ™,
\
wvi b ™,
Srnart T Sounakar | | f "
g | ~ .
Rpphcatien Process = ! e, '_.-'
Audd pratkidng | gl Artpiban s /!
h i
4 Appbrins y ot F
r
Feda | | 7
Segam (gg ——* o Diercoder s [Fi A
e — y
— Auihg repreducion !
path dalay P
Dreers | | 158 Dmears | Acoushc achi Y
i/
rah oy S
i /;
vy
» i ;i
Rofaronce sudo) |] F/"
[path Deday ' | /
A |
.—l N | |I ¥ .
HVF361x-UA

i

Fig. 2.6: ADEC use case diagram

The time window modelled by the Acoustic Echo Canceller (AEC) is finite (filter tail length), and to maximise
its performance it is important to ensure that the reference audio is presented to the AEC time aligned to the
audio being reproduced by the loudspeakers. The diagram below highlights how the reference audio path
delay and the audio reproduction path may be significantly different, therefore requiring additional delay to be
inserted into one of the two paths, correcting this delay difference.

The functional blocks in the ADEC are shown below:

Dual
Microphone
Input

Stereo
Reference
Input

AEC Statistics

Reference
statistics

L, >
X AEC Engine

Switch

Delay line

I

Course Delay
Estimate

Fine Delay
Estimate

Delay Estimator

Fig. 2.7: ADEC block diagram

» Output

The ADEC may apply a delay to either the microphone or the reference path. When the loudspeaker signal
lags behind the reference signal, the ADEC places a delay into the reference channel. When the reference
signal lags behind the loudspeaker speaker, the ADEC places a delay into the microphone channel.

17

XVF3610 Voice Processor - User Guide

Automatic delay estimation is triggered at power-up, or if the host system configuration changes. The process
will not begin until the reference signal is present and has sufficient energy.

The delay estimation process re-purposes the AEC to detect larger delays. During estimation, the AEC does
not perform cancellation. Once the delay is detected and delay correction made, the AEC restarts and con-
verges based on the delayed signals.

Possible causes that may trigger an estimation cycle (where automatic mode is enabled):
+ Host changing applications causing a delay change between loudspeakers and reference.
- Large volume changes between the reference and the loudspeaker play-back.

+ User equipment changes, such as switching from TV audio output to playing the audio through a sound
bar.

The characteristics and specification of the ADEC function is shown below:

Table 2.9: ADEC characteristics

Name Value Description

Maximum delay 4 150ms The maximum delay that can be added to either the micro-

correction phone channel or the reference channel

Estimation time With good reference During this time AEC is disabled. Note that estimation will
SNR: 2-5 seconds not start unless reference is available and loudspeakers

are playing back

18

XVF3610 Voice Processor - User Guide

The configuration commands are shown below:

Table 2.10: Automatic Delay Estimator parameters

Command Type Value Description Notes
GET_DELAY_SAMPLES uint32 [0-2399] Change the number of samples of input de- A
SET_DELAY_SAMPLES lay at the sample rate 16kHz. The delay is

applied to either the reference or the micro-
phone input according to the delay direc-
tion. This provides a maximum delay of +/-

150mS.
GET_DELAY_DIRECTION uint32 [0-1] Select the direction of input delay. 0: Delay A
SET_DELAY_DIRECTION the reference input (default) - 1: Delay the
microphone input.
GET_DELAY_ESTIMATE uint32 [0-7200] Get an estimate of the number of samples

of delay on the reference input at a sample
rate of 16kHz. This value is valid only when a
delay estimation is in progress and is offset
by the maximum length of the delay buffer
(2400 samples). Add 2400 samples to this
value to get the absolute delay estimate.

SET_ADEC_ENABLED uint32 [0-1] Enable automatic delay control: 0. ADEC

GET_ADEC_ENABLED disabled - 1: ADEC enabled.

GET_ADEC_MODE uint32 [0-1] Get the status of delay estimation: 0: Nor-
mal AEC mode - 1. delay estimation in
progress.

SET_ADEC_INITIAL_CYCLE uint32 [0-1] Trigger a delay estimation cycle at startup.

_ENABLED The default behavior in firmware is to

trigger a delay estimation cycle when
the far end reference is detected for
the first time after device reset. This is
done irrespective of whether automatic
delay control is enabled or disabled. To
disable this initial delay estimation set
SET_ADEC_INITIAL_CYCLE_ENABLED = 0
in the Data Partition.

SET_MANUAL_ADEC_CYCLE uint32 [0-1] Trigger a delay estimation cycle.

_TRIGGER If delay estimation is disabled the
SET_MANUAL_ADEC_CYCLE_TRIGGER
can be used to force a delay estimation
cycle at any time.

NOTES:

[A] When the ADEC is enabled, this value will be overwritten, therefore the SET commands should not be used.
GET commands remain valid.

2.7 Interference canceller

The Interference Canceller (IC) suppresses static noise from point sources such as cooker hoods, washing
machines, or radios for which there is no reference audio signal available. When an internal Voice Activity
Detector (VAD) indicates the absence of voice, the IC adapts to remove noise from point sources in the en-
vironment. When the VAD detects voice, the IC suspends adaptation which maintains suppression of the
interfering noise sources previously adapted to.

The IC only operates on the ASR channel from the pipeline output.

19 y,

XVF3610 Voice Processor - User Guide

The following table describes the configuration parameters for the Interference Canceller.

Table 2.11: Interference Canceller (IC) parameters

Command Type Value Description Notes
SET_BYPASS_IC GET_BYPASS_IC uint32 [0-1] Set IC bypass parameter: 0 = A

IC bypass disabled (default) -

1=1C bypass enabled
SET_CH1_BEAMFORM_ENABLE uint32 [0-1] Enable beamformed output

GET_CH1_BEAMFORM_ENABLE

on IC output channel index
1 - 0 = Passthrough IC in-
put channel 1 onto IC output
channel 1- 1 = Beamformed
output on IC output channel 1
(default)

RESET_FILTER_IC

This command resets the IC
filter

[A] If Alternative architecture mode (ALT_ARCH) is enabled (default), the IC bypass state will be dynamically
changed by the firmware. Do not use the SET_ commands. The GET_ commands remains functional.

2.8 Noise Suppressor (NS)

The Noise Suppressor (NS) suppresses noise from sources whose frequency characteristics do not change
rapidly over time. This includes diffuse background noise and stationary noise sources.

The following table describes the settings for the Noise Suppressor.

Table 2.12: Noise Suppressor (NS) commands

Command Type Value

Description

GET_BYPASS_SUP uint32 [0-1]
SET_BYPASS_SUP

Get / set suppressor bypass parame-
ter. If set to one the suppressor which
contains the noise suppression stages
is bypassed. 0: suppressor bypass
disabled (default) 1: suppressor by-
pass enabled

GET_ENABLED_NS uint32 [0-1]
SET_ENABLED_NS

Get / set noise suppression enabled
parameter within the suppressor. If set
to one - the noise suppression stage
within suppressor is enabled. Chang-
ing this parameter only takes effect if
the suppressor is not bypassed. O0:
noise suppression disabled - 1: noise
suppression enabled (default)

2.9 Automatic Gain Control (AGC) and Loss Control

The Automatic Gain Control (AGC) can dynamically adapt the audio gain, or apply a fixed gain such that voice
content maintains a desired output level. The AGC uses an internal Voice Activity Detector to normalise voice
content and avoid amplifying noise sources and applies a soft limiter to avoid clipping on the output. The

20

XVF3610 Voice Processor - User Guide

design is based on standard modern AGC techniques as detailed in ‘Acoustic Echo and Noise Control’, by
Hansler and Schmidt.

The desired output level of voice content is defined by an upper and lower threshold. If a voice signal is outside
of the upper and lower threshold then the gain will adapt accordingly. If the voice signal is within the upper
and lower threshold then the gain will remain constant.

The rate at which the gain increases or decreases per audio frame can also be configured. The gain increment
value must be greater than 1, whilst the gain decrement value must be below 1. When the gain is adapting, the
current gain value is multiplied by either the increment or decrement value to calculate the gain value to be
applied on the next audio frame. Voice activity is monitored and included in the algorithm to avoid the noise
floor being amplified during silent periods. In addition, maximum and minimum levels may be set to keep the
gain within a certain range.

The following table details the configuration parameters for the AGC and the Loss Control. Both GET_ and
SET_ operations are supported for these parameters.

Table 2.13: Automatic Gain Control (AGC) parameters

Parameter Type | Value Description

uint32 | [0 - 1] Set Loss Control to be enabled in the
LC_ENABLED_CHO_AGC AGC for channel 0 or 1. 0 - Loss Con-
LC_ENABLED_CH1_AGC trol disabled for the channel 1- Loss

Control enabled for the channel
Q16.16] [0..32767] Loss control gains: argl: max arg2:
LC_GAINS_CHO_AGC double-talk arg3: silence arg4: min
LC_GAINS_CHT_AGC

Q16.16| [0..32767] Number of frames in loss control for

LC_N_FRAMES_CHO_AGC near-end and far-end activity arg?:
LC_N_FRAMES_CH1_AGC near-end arg2: far-end

Q16.16| [0..32767] Loss control gamma coefficients:
LC_GAMMAS_CHO_AGC background power increment and
LC_GAMMAS_CH1_AGC decrement argl: background power

arg?2: increment arg3: decrement
Q16.16| [0..32767] | Loss control delta coefficients: argT:

LC_DELTAS_CHO_AGC far-end only arg2: near-end only arg3:
LC_DELTAS_CH1_AGC both far-end and near-end

Q1.31 | [0.1] Loss control correlation threshold for
LC_CORR_THRESHOLD_CHO_AGC channel. Values are linear. Default:
LC_CORR_THRESHOLD_CH1_AGC 1000

Q16.16] [0..32767] | Set the minimum gain threshold in
MIN_GAIN_CHO_AGC the AGC for channel 0 or 1. Values are
MIN_GAIN_CHT_AGC linear. Default: 0

uint32] [0-1] Enable soft clipping on the output of
SOFT_CLIPPING_CHO_AGC channel 0 or 1. 0: Soft clipping dis-
SOFT_CLIPPING_CH1_AGC abled for the channel - 1: Soft clipping

enabled for the channel

Q1.31 | [0..] Set the upper threshold for desired
UPPER_THRESHOLD_CHO_AGC voice level. Values are inrange 0 to 1
UPPER_THRESHOLD_CH1_AGC (full-scale) and must be greater than

the lower threshold of the channel
continues on next page

21 y,

XVF3610 Voice Processor - User Guide

Table 2.13 — continued from previous page

Parameter Type | Value Description

Q1.31] [0..7] Set the lower threshold for desired
LOWER_THRESHOLD_CHO_AGC voice level. Values are in range 0 to
LOWER_THRESHOLD_CH1_AGC 1 (full-scale) and must be lower than

the upper threshold of the channel
Q16.16] [0..32767] | Set the rate at which the gain in-

INCREMENT_GAIN_STEPSIZE_CHO_AGC creases. This value is applied on a

INCREMENT_GAIN_STEPSIZE_CH1_AGC per-frame basis when voice content
is detected

Q16.16] [0..32767] | Set the rate at which the gain de-

DECREMENT_GAIN_STEPSIZE_CHO_AGC creases. This value is: applied on a

DECREMENT_GAIN_STEPSIZE_CH1_AGC per-frame basis when voice content
is detected

The Loss Control process improves the subjective audio quality by attenuating any residual echo of the ref-
erence far-end audio. It is designed to be used on the communications channel. In cases where there is both
far-end echo and near-end audio then the attenuation is reduced, allowing listeners to interrupt each other.
The Loss Control relies on the Automatic Echo Canceller to classify and attenuate residual far-end echo.

2.10 Alternative Architecture mode (ALT_ARCH)

The Alternative Architecture mode, when enabled, improves Echo Cancellation performance in reverberate
environments. It operates by re-configuring the audio pipeline by switching out either the Acoustic Echo
Canceller (AEC) or the Interference Canceller (IC), depending on the energy in the AEC reference signal, to
recover resources for use by the rest of the pipeline.

The two audio pipeline configurations are summarised below:
« ALT_ARCH disabled ALWAYS apply echo-cancelling AND interference cancelling; or

+ ALT_ARCH enabled apply ONLY echo-cancelling when a reference signal is available, otherwise ONLY
apply interference cancelling.

Multiplexers permit the AEC and/or the IC to be bypassed. When bypassing the IC, the XVF3610 reconfigures
the AEC to use a single channel which results in the AEC cancelling echos received later in time. An internal
module which collects statistics about the reference is used to dynamically control these multiplexers and
memory allocation during runtime.

Note: Manually bypassing the IC using the Control Interface does not apply the memory reallocation.

22 p,

XVF3610 Voice Processor - User Guide

The figure below highlights the audio signal path when the Alternative Architecture is disabled (ie. standard
operation).

Bypass Bypass
AEC IC
Microphone)
creme —> 1 L — » 3 0 11 ASR
channel
MICTODNONE s— A C [~ » IC
Channel 1 -
Reference T I %
(Stereo) 1" 3 T/ v ¥ :
ADEC VAD
I o lo the comms
» o
Delay line channel

Alternate Mode

AEC Buffer
memory

Fig. 2.8: Audio pipeline configuration, [ALT_ARCH=0] mode

Statistics

|IC Buffer
memory

23

24

XVF3610 Voice Processor - User Guide

Whenever ALT_ARCH=1, then the pipeline dynamically switches between AEC alone, or IC alone. In this con-
dition the AEC is able to make use of additional memory increasing the echo cancelling period, and making it

more resilient to echo in highly reverberant conditions.

Bypass Bypass
AEC IC
Microphone | * >
Channel 0 I / > > to the ASR
channel
Microphone =——————p AEC _ [~ » IC >
Channel 1 il
Reference i A
(Stereo) V 3 T/ Y !
ADEC VAD
I o [0 the comms
Delay line channel
Alternate Mode
¥ Y
|
Statistics AEC Buffer &3 IC Buffer
memaory Memory allocated | memory |
to the AEC S~

Fig. 2.9: Audio pipeline configuration, [ALT_ARCH=1] when reference signal is present

XVF3610 Voice Processor - User Guide

The dynamic switching uses statistics collected from the reference signal to establish if echo cancelling is
required.

Bypass Bypass
AJE'C IC
Microphone »
Channel 0 J N L | > io the ASR
’ channel
Microphone » AEC § [» I
Channel 1
Reference i -)
(Sterso) ‘, i / I Y Y I !
ADEC VAD
I . [0 the comms
. ~ channel
Delay line
Alternate Mode
L] I
Statistics AEC Buffer IC Buffer
memory memory
Fig. 2.10: Audio pipeline configuration, [ALT_ARCH=1] when reference signal is absent
25 l‘

XVF3610 Voice Processor - User Guide

The following table summarises the audio characteristics for standard and alternative architectures.

Table 2.14: Alternative pipeline mode characteristics

Pipeline configu-
ration

Far-end audio (AEC Ref) status Pipeline functionality | AEC characteristics

ALT_ARCH =0 With and without Far-end audio | IC enabled / AEC en- | Max echo delay =
present abled 150ms
ALT_ARCH =1 No far-end audio IC enabled / AEC dis- | No cancellation
abled
ALT_ARCH =1 Far-end audio present IC disabled / AEC en- | Max echo delay =
abled 225ms

The following table describes the configuration parameters for the Alternative Architecture.

Table 2.15: Alternative pipeline mode configuration parameters

Command

Type Value Description

SET_ALT_ARCH_ENABLED uint32 [0-17] Enable or disable alternative architecture (alt arch).

0: Alt arch is disabled - 1. Alt arch is enabled. When
alt arch is enabled, the system works in either AEC
mode (when far end signal is detected) or IC mode
(when far end signal is not detected). When in AEC
mode in Alt arch AEC processing happens on only
one Mic channel with 15 phases per mic-ref AEC fil-
ter.

26

3 System Interfaces

The XVF3610 voice processor provides the following additional interfaces to increase usability and reduce
total system cost:

+ 4 General Purpose Output pins. These can be configured as simple digital I/0 pins, Pulse Width Modu-
lated (PWM) outputs and rate adjustable LED flashers.

+ 4 General Purpose Input pins. These can be used as simple logic inputs or event capture (edge detec-
tion).

« 1°C and SPI Master to control external devices such as ADCs, DACs or external keyword detection de-
vices.

3.1 General Purpose Input and Output and Peripheral Bridging

The XVF3610 supports 1/0 expansion and protocol bridging over USB and 1°C for the XVF3610-UA and
XVF3610-INT respectively. This allows peripheral devices such as audio hardware connected to XVF3610
to be configured and monitored by the host.

XMOs
Device GPO f——-=>

Host p USB / IC >

SPI Master ————p

IEC Master [€—>

Fig. 3.1: Device GPIO interfaces

+ Four GPI channels (pins)

+ Direct read of port value

+ Rising, falling or both edge capture with “sticky” bit which is cleared on read
+ Mode configurable per pin

+ Four GPO channels (pins)

+ Direct write of entire port or pin

« Active high or Active low

+ 500Hz PWM configurable between 0 and 100% duty cycle

+ Blinking control supporting a sequence of 32, 100ms states
+ SPI Master

+ MMbps SPI clock

+ Up to 128 Bytes SPI write

+ Up to 56 Bytes SPI read

27 y,

« I12C Master (XVF3610-UA only)
+ 100kbps SCL clock speed

- Register read/write (byte)

+ Up to 56 byte 12C read/write

The following sections describe the configuration and usage of each peripheral interface.

3.2 GPIO

There are four general input and four general output pins provided on the XVF3610.

Table 3.1: GPIO pin table

XVF3610 Voice Processor - User Guide

Name Description 1/0
IP_0 General purpose input I
IP_1 General purpose input |
IP_2 General purpose input I
IP_3 General purpose input |
OP_0 General purpose output 0
OP_1 General purpose output 0
0OP_2 General purpose output 0
OP_3 General purpose output 0

3.3 General Purpose Inputs

The commands in the following table are available to read and control GPIls. Some read commands use the

SET_GPI_READ_HEADER command to select the GPI port and pin.

Note: Interrupt registers are set to 1 when an edge has been detected and 0 when no event has occurred. All
interrupt registers are initialised to 0 on boot.

28

XVF3610 Voice Processor - User Guide

Table 3.2: General Purpose Input commands

Command

Type

Dir

Args

Description

GET_GPI_PORT

uint32

READ

]

Read current state of all pins in the se-
lected GPI port

GET_GPI_PIN

uint32

READ

7

Read current state of the selected GP!I
pin

GET_GPI_INT_PENDING _PIN

uint32

READ

Read whether interrupt was triggered for
selected pin. The interrupt pending reg-
ister for the selected pin is cleared by this
command

GET_GPI_INT_PENDING
_PORT

uint32

READ

Read whether interrupt was triggered for
all pins on selected port. The interrupt
pending register for the whole port is
cleared by this command

SET_GPI_PIN_ACTIVE
_LEVEL

uint8

WRITE

Set the active level for a specific GPI pin.
Arguments are <Port Index> <Pin Index>
<Level> - O=active low - 1=active high. By
default - all GPI pins are set to active high

SET_GPILINT_CONFIG

uint8

WRITE

Sets the interrupt config for a spe-
cific pin. Arguments are <Port Index>
<Pin Index> <Interrupt type> - 0=None -
1=Falling - 2=Rising - 3=Both

SET_GPI_READ_HEADER

uint8

WRITE

Sets the selected port and pin for the
next GPI read. Arguments are <Port In-
dex> <Pin Index>

GET_GPI_READ_HEADER

uint8

READ

Gets the currently selected
port and pin set by a previous
SET_GPI_READ_HEADER command

SET_KWD_INTERRUPT_PIN

uint8

WRITE

Set GPI pin index to receive kwd interrupt
on

GET_KWD_INTERRUPT_PIN

uint8

READ

Read GPI pin index to receive kwd inter-
rupt on

29

XVF3610 Voice Processor - User Guide

3.4 General Purpose Outputs

The following commands are available to write and control GPOs:

Table 3.3: General Purpose output commands

Command Type Args Description

SET_GPO_PORT uint32 2 Write a value to all pins of a GPO port. Argu-
ments are <Port Index> <Value>

SET_GPO_PIN uint8 3 Write to a specific GPO pin. Arguments are
<Port Index> <Pin Index> <Value>

SET_GPO_PIN_ACTIVE_LEVEL uint8 3 Set the active logic level for a specific GPO

pin. Arguments are <Port Index> <Pin Index>
<Level> - O=active low - T=active high. By de-
fault all GPO pins are active high

SET_GPO_PWM_DUTY uint8 3 Set the PWM duty for a specific pin. Value
given as an integer percentage. Arguments
are <Port Index> <Pin Index> <Duty in percent>

SET_GPO_FLASHING uint32 3 Set the serial flash mask for a specific pin.
Each bit in the mask describes the GPO state
for a 100ms interval. Arguments are <Port In-
dex> <Pin Index> <Flash mask>

Note: All GPOs have a weak pull-down (~30kQ) during reset, initialised to logic low on device boot and will
always drive the pin thereafter.

To illustrate usage of the GPOs the following section considers four common examples. Writing to a GPO
pin, configuring a PWM output, generating a blink sequence and driving a three colour (RGB) LED.

The following commands toggle OP_2 high then low (XVF3610-UA shown for example):

vfctrl_usb SET_GPO_PIN O 2 1
victrl_usb SET_GPO_PIN O 2 O

To set all GPOs high and then low:

victrl_usb SET_GPO_PORT 0 15
victrl_usb SET_GPO_PORT 0 O

The PWM runs at a fixed 500Hz frequency designed to minimise visible flicker when dimming LEDs and
supports 100 discrete duty settings to permit gradual off to fully-on control.

The following commands illustrate setting individual PWM frequencies on each output by setting GPO pins
0,1, 2 and 3 to output 25%, 50%, 75% and 100% duty cycles respectively:

victrl_usb SET_GPO_PWM_DUTY O 0 25
victrl_usb SET_GPO_PWM_DUTY O 1 50
vfctrl_usb SET_GPO_PWM_DUTY O 2 75
vfctrl_usb SET_GPO_PWM_DUTY O 3 100
Setting a pin duty to 100% is the same as setting that pin to high.

Each GPO is driven from the LSB of an internal 32bit register, which is rotated by one bit every 100mS.

30 p,

The figure below shows how the blinking sequence works:

XVF3610 Voice Processor - User Guide

31 bits 30..4 3 2 10
1 1/0[1]0
3.2s 3.1s Time line 03s 0.2s 0.1s 0.0s
R T 17 T 1%
- Tt el repeat ____a==T

Fig. 3.2: Use of 32 bit word is used to define the blinking function of GPO

31

XVF3610 Voice Processor - User Guide

The following commands generate these LED effects:
+ GPO pin 0 blinking, ON for 1.6 seconds, then OFF for 1.6 seconds, i.e. a period of 3.2 seconds;
+ GPO pin 1 blinking, ON for 0.8 seconds, then OFF for 0.8 seconds, i.e. a period of 1.6 seconds;
+ GPO pin 2 blinking, ON for 0.1 seconds, then OFF for 0.1 seconds, i.e. a period of 0.2 seconds;

victrl_usb SET_GPO_FLASHING O 0 4294901760 # equivalent to pattern: xzFFFF0000
victrl_usb SET_GPO_FLASHING O 1 4042322160 # equivalent to pattern: xzFFO0FF00
victrl_usb SET_GPO_FLASHING O 2 2863311530 # equivalent to pattern: zAAAAAAAA

Note: A GPO pincan be settobotha PWM duty cycle, and to flashing by issuing both a GPO_SET_PWM_DUTY
instruction and a SET_GPO_FLASHING instruction for the same port and pin.

Where RGB LEDs are connected to three GPO pins (0 = Red, 1= Green, 2 = Blue) automated colour sequencing
can be programmed. For example, to colour cycle between Red-Yellow-Green-Cyan-Blue every 3.2 seconds:

victrl_usb SET_GPO_FLASHING O O 65535 # 0 z0000FFFF
victrl_usb SET_GPO_FLASHING O 1 16776960 # 0 z00FFFF00
victrl_usb SET_GPO_FLASHING O 2 4294901760 # 0 xFFFF0000

3.5 I2C Master peripheral interface (XVF3610-UA Only)

The XVF3610-UA variants provide an I°C Master interface which can be used as:

+ A bridge from the USB interface, i.e. VFCTRL_USB commands can be used from the host to read and
write devices connected to the I2C Peripheral Port;

+ Amechanism to initialise devices connected to the I2C Peripheral Port by incorporating commands into
the Data Partition (in the external flash), which are executed at boot time.

The interface supports:
- 100kbps fixed speed
+ 7bit addressing only

* Byte I°C register read/writes

32 p,

XVF3610 Voice Processor - User Guide

The following table shows the commands for the configuration of the 12C Master interface:

Table 3.4: 12C peripheral interface commands

Command Type Num Num Definition
args val-
ues
SET_I2C_READ_HEADER uint8 3 0 Set the parameters to be used by the next

GET_I2C or GET_I2C_WITH_REG command. Ar-
guments: 1. The 7-bit I1°C Slave device address.
2: The register address within the device. 3: The
number of bytes to read.

GET_I2C_READ _HEADER uint8 0 3 Get the parameters to be used by the next
GET_I2C or GET_I2C_WITH_REG command. Re-
turned values: 1: The 7-bit 1°C Slave device ad-
dress. 2: The register address within the device.
3: The number of bytes to read.

GET_I2C uint8 0 56 Read from an I1°C device defined by the
SET_I2C_READ_HEADER command. Returned
values: 1 to 56: The number of bytes read
as defined by the SET_I2C_READ_HEADER
command followed by additional undefined
values. The number of bytes read from the I1°C
device when executing GET_I2C is set using
SET_I2C_READ_HEADER.

GET_I2C_WITH_REG uint8 0 56 Read from the register of an I“C device as de-
fined by the SET_I2C_READ_HEADER command.
Returned values: 1to 56: The number of bytes
read as defined by the SET_I2C_READ_HEADER
command followed by additional undefined val-
ues. The number of bytes read from the 1°C de-
vice when executing GET_I2C_WITH_REG is set
using SET_I2C_READ_HEADER.

SET_I2C uint8 56 0 Write to an I°C Slave device. Arguments: 1. The
7-bit 1°C Slave device address. 2: The number of
data bytes to write (n). 3 to 56: Data bytes. All 54
values must be given but only n will be sent.

SET_I2C_WITH_REG uint8 56 0 Write to a specific register of an I°C Slave device.
Arguments: 1: The 7-bit I°C Slave device address.
2: The register address within the device. 3: The
number of data bytes to write (n). 4 to 56: Data
bytes. All 53 values must be given but only n will
be sent.

33 p,

XVF3610 Voice Processor - User Guide

The figures below shows the signals and messages for reading and writing registers. Raw 12C read/writes

may be performed.

Broadcas! the address of the Wiite the address of the register you
peripheral device want to access in the peripheral XVF361x signals
Peripheral responses
- o
Repeat the address of Intizte Read 'n' bytes from the peripharal register Wmﬂ?::l::!;.ra
the peripheral device: a Read MACK

Fig. 3.3: I1°C protocol for register reads

Broadcast the address of the Wirite the address of the register you
peripheral device wanl 1o aceess in the peripheral

Write ' bytes to the peripheral register

Fig. 3.4 17C protocol for register writes

34

XVF361x signals
Peripheral responses

XVF3610 Voice Processor - User Guide

Broadeast the address of Read or

the peripheral davice Wiite XVF361x signals
Peripheral responses E

ACK

==

7o 2 Andress 1:.:

Reads are
terrinated by a
Read or Write ‘n' bytes fromito the peripheral register NACHK
Fead
80 Daia ... 8 Data Mo | stop
Wit

Fig. 3.5: 1°C protocol for raw reads and writes

XVF3610 Voice Processor - User Guide

3.6 12C Slave Control interface (XVF3610-INT only)

The XVF3610-INT implements an I°C Slave interface for Control and Setup of the device. The interface con-
forms to the following specifications.

Table 3.5: 12C interface specification

Specification Value
Maximum I°C operation speed 100kbps
I°C Slave Address 0x2C

3.7 Using I2C Master to write to a device

Typically byte register read/writes are used to configure external 12C controlled hardware.

As an example, assume there is a device connected at address 0x40 (64) with three, single byte registers.
The following commands will write 77 to register 0, 48 to register 1 and 33 to register 2:

victrl_usb SET_I2C_WITH_REG 64 0 1 77 0 0 0 0 00000 00000000000O0O0O0O0 0y
-00000000000000000O0O0OOOOCOO0O0OO0O
victrl_usb SET_I2C_WITH_REG 64 1 148 000 000000000000000O000O0O0O0 0y
-000000000000000000000000000O0
victrl_usb SET_I2C_WITH_REG 64 2 1 33 000000 000000000000000O0O00 0y
-00000000000000000O0O0OOOOO0O0O0O

Note: The control protocol does not support variadic (variable number of) arguments. Hence, even when
writing a single byte, the full number of arguments must be passed. Unwritten values are ignored.

3.8 Using the I12C Master to read from a device

To verify the previous 1°C register write to register number 0 at address 0x40 (64), an 1C register read can be
performed as follows:

vfctrl_usb SET_I2C_READ_HEADER 64 0 1

victrl_usb GET_I2C_WITH_REG
>77T000000000000000000O0O00O
000000000000000000000000O0D00O0000O00ODO0OO0O

The byte read is the first of the 56 return values, which in this case, is 77. The following 55 values are undefined
since the command only performed a read of 1 register.

36 .

XVF3610 Voice Processor - User Guide

3.9 SPI Master

The XVF3610-UA and XVF3610-INT variants provide an SPI Master interface which can be used as:

+ A bridge from the USB interface, i.e. vfctrl_usb commands can be used from the host to read and write
devices connected to the SPI Peripheral Port; and

+ Amechanism to initialise devices connected to the SPI Peripheral Port by incorporating commands into
the Data Partition (in the external flash), which are executed at boot time.

Note: From Version 4.1the SPI Master peripheral interface is not available on XVF3610-UA and XVF3610-INT
devices that have been SPI booted to prevent possible bus contention issues.

The SPI Master peripheral supports the following fixed specifications:
+ Single chip select line
+ IMbps fixed clock speed
+ Supports either reads or writes. Duplex read/writes are not supported.
+ Most significant bit transferred first
+ Mode 0 transfer (CPOL = 0, CPHA = 0)

Note: The chip select is asserted a minimum of 20ns before the start of the transfer and de-asserted a
minimum of 20ns after the transfer ends.

37 y,

XVF3610 Voice Processor - User Guide

The SPI Master is controlled using the following commands.

Table 3.6: SPI peripheral interface commands

Command Type Args Description

GET_SPI uint8 56 Gets the contents of the SPI read buffer.

GET_SPI_READ_HEADER uint8 2 Get the address and count of next SPI read.

SET_SPI_PUSH uint8 56 Push SPI command data onto the execution queue.

SET_SPI_PUSH_AND_EXEC uint8 56 Push SPI command data and execute the command
from the stack. Data will then be sent to SPI device.

SET_SPI_READ_HEADER uint8 2 Set address and count of next SPI read.

Reads of up to 56 Bytes at a time may be performed but writes of 128 Bytes at a time can be made by pushing
multiple commands into a command stack and executing them in one go. The transaction is performed within
a single chip select assertion.

SPI_MOSI ‘ 8b Address |

SPI_MISO | 8b Data ‘ as ‘ 8b Data

SPLCSN | [
Fig. 3.6: SPI peripheral, read sequence

SPI_MOsSI ‘ 8b Address | 8b Data ‘ T ‘ 8b Data ‘

sso [y L - "THH UL

SPLCSN | [

Fig. 3.7: SPI peripheral, write sequence

The control protocol does not support variadic (variable number of) arguments. Hence, even when writing a
single byte, the total number of arguments passed must be the maximum. Unwritten values are ignored.

See below examples.

The following example writes one byte of data (with value 122) to a control register as address 6:

victrl_i2c SET_SPI_PUSH_AND_EXEC 0 0 0 0 0O 0O 0OO0OO0OO00000000000O0O0OOOO0 0y
-000000000000000000000000O06®61 122

Note: All numbers are decimal. It is necessary to pad the payload to 56 bytes, which includes the address,
length and data values. This is a requirement of the vfctrl tool, the SPI interface itself will only transmit the
valid data.

Transmitting more than 54 bytes of data is possible using the SET_SPI_PUSH command to queue up data,
using multiple commands before the push is executed. The following example writes values 0 to 69 to ad-
dress 100 (70 bytes in total) and it uses two commands. The first command is SET_SPI_PUSH and it pushes
56 data values into the queue, and the second is SET_SPI_PUSH_AND_EXEC and it contains the address to
use (100), the data size (70) and the remaining 14 data words:

38 p,

XVF3610 Voice Processor - User Guide

victrl_i2c SET_SPI_PUSH 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35,
—34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
-3210

victrl_i2c SET_SPI_PUSH_AND_EXEC 0 0 0 0 0 0000 O000000000000O000O0O0O0 0y
-0 00000000O0O0O0 100 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56

To read one byte at address 6, which contains the value 122, do the following:

vfctrl SET_SPI_READ_HEADER 6 1

victrl GET_SPI

> GET_SPI: 122 000 000000000000000000000O0
->0000000000000000000000000O00ODO0O0OO0DO

To read 16 bytes from address 100, which contain the values from 0 to 15, do the following:

vfctrl SET_SPI_READ_HEADER 100 16
vfctrl GET_SPI
> GET_SPI: 0 1
->000000

234567891011 12 1314150000000
000000000000O00O00ODO0O0OO0OO0OOOOOOO0OOOO

4 System Boot and Initial Configuration

The standard mechanism for booting the XVF3610 is from an attached QSPI Flash device. This provides
standalone operation, and persistent storage for configuration data. The XVF3610 supports device firmware
upgrade (DFU) over USB (UA product variants) and 1°C (INT product variant).

Pre-compiled host utilities, and source code for reference, are supplied for performing DFU operations.

In addition, when using flash to boot the XVF3610 processor, a Data Partition in the flash memory can be used
to store commands which are executed immediately after boot-up to configure and define the functionality
of the device.

An alternative boot mode, using a executable image supplied by a host processor over a SPI interface is also
available for the XVF3610.

The following sections describe the boot process and the Data Partition, including customisation for specific
applications.

4.1 Boot process

The standard mechanism for booting is from an attached QSPI Flash device. This provides standalone opera-
tion, and persistent storage for configuration data. VocalFusion® XVF3610 supports device firmware upgrade
(DFU) over USB (UA product variants) and I>C (INT product variant). Pre-compiled host utilities, and source
code for reference, are supplied for performing DFU operations.

The following sections discuss the structure of data within the flash memory, and operation of DFU.

Warning: While the functionality of the DFU is similar to the USB DFU specification, it has diverged to
accommodate both USB and I2C operation and therefore is not compatible with compliant USB DFU tools.

4.2 Flash storage structure

The structure of data within the VocalFusion® XVF3610 is arranged to contain a factory image, a single up-
grade image, device serial numbers and Data Partitions for both the factory and upgrade image. This is shown
below.

:_. 1 MByte boot space hz_, Remaining space for build & data images ,_:
L HW | Serial !
Factory boot image Upgrade bootimage | build | num- Fa;g:nr?rmnn:m Upg?;ﬁn?_lam [
[info ber [
-«

Board info unaffected
by normal DFU

Fig. 4.1: Flash data structure for VocalFusion® XVF3610

40 7

XVF3610 Voice Processor - User Guide

- The factory bootimage is the executable code for VocalFusion® and is supplied in the Release Package
in the bin directory. The file format is xe, which refers to XMOS Executable. This is written to the device
via the XTAG debugger or through a bulk flash programming operation.

+ The upgrade boot image, if present, is the executable code written to the flash memory via a DFU
operation. Generation of the upgrade boot image is covered below.

+ The HW build info is specified in the json Data Partition file for the factory image and is written at
the same time as the factory image and Data Partition. It is a unique identifier which is unaffected by
subsequent DFU upgrade operations.

+ The Serial Number is a custom field which can be programmed via USB and I°S control interfaces and
remains untouched by the subsequent DFU operations.

+ The Factory and Upgrade Data Partitions are the associated Data Partitions for the factory and upgrade
images (where upgrade is present). They are written to flash in the same operation as the boot images.
For more information on the generation and usage of Data Partitions see the Configuration and the Data
Partition section.

Warning: Storage of only a single upgrade boot image and Data Partition pair is supported. Therefore,
any upgrade image applied will overwrite any existing upgrade image present.

A summary of the factory programming and field update process for flash-based systems is shown in the
reference section.

4.3 Programming the Factory Boot image and Data Partition

Warning: The XVF3610 firmware supports only the tools version 15.1.4 for the flash operations described
in this section.

The XVF3610 Voice Processor is provided in two pre-compiled builds (UA and INT) and as such only requires
the usage of one of the XTC tools programming tools, specifically xflash. This operates as a command-line
application to create the boot image, and if using flash, to program the boot image to the attached device.

An XTAG debugger must be connected to the XVF3610 for flash programming operations. Refer to the De-
velopment Kit User Guide for information on using XTAG connections to the XK-VOICE-L71 kit.

The basic form of the xf1lash command for flash image creation and programming with a Data Partition is
as follows:

xflash --boot-partition-size 0x100000 --factory [Application executable (.xe)] --datay
— [Data partition description (.bin)]
where

« Application executable (.xe) The .xe file is a boot image provided with a VocalFusion® release package
in one of the supported configurations (UA or INT product variants).

+ Data partition description (.bin) The .bin file is a Data Partition description either supplied in the release
package (UA or INT) or customised as described later in this section.

Note: Boot over SPI from a host processor uses a specific image which is supplied in the release package.
No Data Partition is included, as configuration commands are assumed to be supplied by the host controller
used.

41 y,

XVF3610 Voice Processor - User Guide

4.4 Upgrade Images and Data Partitions

In order to be able to apply an upgrade image to the device it must be programmed with a factory image and
a Data Partition.

The Device Firmware Update (DFU) process requires the use of two utilities, dfu_usb or dfu_i2c, depending
on the firmware variant, and dfu_suffix_generator.

Precompiled versions of these utilities are provided as part of the Release Package in the appropriate platform
directory in /host (e.g. /host/Win32/bin), and the source code for the DFU utility is provided in the /host/
src/dfu directory.

For more information on building the host applications refer to the build instructions in /host/
how_to_build_host_apps.rst in the Release Package

In addition to the DFU utilities, the upgrade image and Data Partition are required. These are provided in the
Release Package in the /bin and /data-partition/images directories.

Generation of custom Data Partitions is detailed in the Data Partition section.

There are a number of stages required to prepare and execute a DFU to ensure a safe and successful update.
These are detailed in the next section.

4.5 Generation of Binary Upgrade Image

The Upgrade Image (.xe) needs to be converted to a binary format. Use xflash and the following command
to convert the .xe image into a binary form:

xflash --noinqg --factory-version 15.0 --upgrade [UPGRADE_VERSION] [UPGRADE_EXECUTABLE] -
—o [OUTPUT_BINARY_NAME]

Specify --factory-version value of 15.0 for all 15.x.x releases of the XTC tools. (The 15.0 value refers to
boot loader API for the XTC tool chain).

Note: Should a different version of the XTC tools be used in a future firmware release, the version number
should be noted such that an update image of compatible format can be created.

The upgrade version number is specified with --upgrade <version>. Use the 16-bit format 0xJJMP where
« Jis major
+ Mis minor
+ Pis patch

For example, to create an upgrade Binary image for a UA system, from the v5.7.3 Release Package use the
following command:

xflash --noinq --factory-version 15.0 --upgrade 0x0573 app_xvi3610_ua_vb.7.3.xe -o app_
—xvi3610_ua_v5.7.3.bin

4.6 Addition of DFU Suffix to Binary files

To prevent accidental upgrade of an incompatible image both the binary upgrade image and the Data Partition
binary must be signed using the provided dfu_suffix_generator which can be found pre-compiled in the
host platform directory of the release package e.g. /host/MAC/bin.

This mechanism embeds a structure into the binary files which can be read by the Device Firmware Update
(DFU) tool to check that the binary data is appropriate for the connected device, prior to executing.

42).

XVF3610 Voice Processor - User Guide

The general form of usage for the dfu_suffix_generator is as follows:

dfu_suffix_generator VENDOR_ID PRODUCT_ID [BCD_DEVICE] BINARY_INPUT_FILE BINARY_QUTPUT_
—~FILE

VENDOR_ID, PRODUCT_ID and BCD_DEVICE are non-zero 16bit values in decimal or hexadecimal format, with
the value of 0xFFFF bypassing verification of this field.

When building upgrade images for XVF3610-UA devices, the USB Vendor Identifier (VID) and USB Product
Identifier (PID) are added to the header and then checked by the DFU utility to ensure that the connected
device matches. An error is reported by the tool if there is no match with the connected device.

For XVF3610-INT devices both Vendor ID and Product ID fields should be set to 0xFFFF for the generation
of the upgrade image and Data Partition binary. This instructs the DFU to bypass the checking as there is
no equivalent to the USB identifiers for I2C systems. However, even though the checking is bypassed for the
XVF3610-INT the suffix must be added to both upgrade and Data partition files as the DFU utility checks the
integrity of the binaries based on this information.

The following examples show how to add DFU Suffix to Update binaries for both XVF3610-INT and XVF3610-
UA products.

For XVF3610-UA (default XMOS Vendor and XVF3610-UA product identifiers are used for illustration):

dfu_suffix_generator.exe 0x20B1 0x0016 app_xvi3610_ua_v<release_version>.bin boot.dfu

dfu_suffix_generator.exe 0x20B1 0x0016 data_partition_upgrade_ua_v<release_version>.bin
—~data.dfu

For XVF3610-INT:

dfu_suffix_generator.exe OxFFFF OxFFFF app_xvi3610_int_v<release_version>.bin boot.dfu

dfu_suffix_generator.exe OxFFFF OxFFFF data_partition_upgrade_int_v<release_version>.bin,
—~data.dfu

Warning: Extreme care must be taken if modifying the default Vendor ID or default Product ID through a
Data Partition. If configuration from Data Partition fails, the USB VID and PID will remain at their default
values (VID=0x20B1, PID=0x0016) and DFU requests with the modified ID’s will not be allowed.

4.7 Performing Firmware Updates

The pre-compiled firmware update utility is provided in the Release Package in the host architecture directory
e.g. /host/Linux/bin. For MAC, Linux and Windows the DFU_USB is provided, and for Raspberry Pi DFU_I2C
is provided. The source code can be used to rebuild either version on the required platform.

The general form of dfu_usb utility is as follows:

dfu_usb [0PTIONS] write_upgrade BOOT_IMAGE_BINARY DATA_PARTITION_BIN

OPTIONS: --quiet
--vendor-id 0x20B1 (default)
--product-id 0x0016 (default)
--bcd-device OXFFFF (default)
--block-size 128 (default)

and the general form of the dfu_i2c utility is shown below:

43).

XVF3610 Voice Processor - User Guide

dfu_i2c [OPTIONS] write_upgrade BOOT_IMAGE_BINARY DATA_PARTITION_BIN

OPTIONS: --quiet
--i2c-address 0x2c (default)
--block-size 128 (default)

The two binary files passed to the utility, the boot image and Data Partition, must have the DFU suffix present
otherwise the DFU utility will generate an error. Example DFU utility usage is shown for both XVF3610-UA and
XVF3610-INT below.

For XVF3610-UA:

dfu_usb --vendor-id <USB_VENDOR_ID> --product-id <USB_PRODUCT_ID> write_upgrade boot.dfu
—data.dfu

where the default values of <USB_VENDOR_ID> and <USB_PRODUCT_ID> are 0x20B1 and 0x0016, and for
XVF3610-INT:

dfu_i2c write_upgrade boot.dfu data.dfu

Once complete the following message will be returned and the device will reboot. In the case of XVF3610-UA
the device will re-enumerate.

write upgrade successful

For verification that DFU has succeeded as planned, the vfctr/ utility can be used to query the firmware version
before and after update. For example, to query the version of XVF3610-UA the following command is used:

victrl_usb GET_VERSION

Note: The vfctrl utilities check the version number of the connected device to ensure correct oper-
ation. To suppress an error caused by a disparity in the version of vfctrl and upgraded firmware the
--no-check-version option can be used with the utility.

4.8 Factory restore

To restore the device to its factory configuration, effectively discarding any upgrades made, the same process
as outlined above is followed but using a blank Boot Image and Data Partition.

This is the only way a restore can be initiated as the device does not have the ability to restore itself.

The same blank file can be used for both Boot Image and Data partition and can be generated using dd on
MAC and Linux, and fsutil on Windows. A blank image can be created with a file of zeroes the size of one
flash sector. In the normal case of 4KB sectors on a UNIX-compatible platform, this can be created as follows:

dd bs=4096 count=1 < /dev/zero 2>/dev/null blank.dfu

and for Windows systems:

fsutil file createNew blank.dfu 4096

The process outlined in the Generation Upgrade Image and Data Partition section can now be followed using
the blank.dfu file for both Boot Image and Data Partition.

44),

XVF3610 Voice Processor - User Guide

4.9 Boot Image and Data Partition Compatibility checks

The format of Data Partitions and Boot Images may change between version increments. Therefore to pre-
vent incompatible Boot and Data Partitions from running and causing undefined behaviour, a field called com-
patibility version is embedded into the Data Partition. A running Boot Image checks its own version, against
the compatibility version in the Data Partition before reading the partition data.

The version of the firmware should also be specified in the --upgrade argument of xflash when generating
the upgrade image as described previously.

If the compatibility check fails, the booted image, which could be a factory image or an upgrade image, will
not read the Data Partition and will operate with its default settings (described in Default Operation section).
The Boot status is reported in the RUN_STATUS register which can be accessed via the vfctr! utility, for example:

victrl_usb.exe GET_RUN_STATUS

Successful Boot status is reported by either FACTORY_DATA_SUCCESS or UPGRADE_DATA_SUCCESS depending
on which Boot Image was executed.

If unsuccessful the device will revert to a fail-safe mode of operation. The RUN_STATUS register can be queried
for further debug information. The full list of RUN_STATUS codes are described in the Reference information
section.

Note: Fail safe mode uses the default vendor ID of 0x20B1 (XMOS) and product ID of 0x0016. In this event,
the host needs to be equipped with the ability to locate the USB device under different IDs.

4.10 Custom flash memory devices

The majority of QSPI flash devices conform to the same set of parameters which define the access and
usage of flash devices. However, to support instances when the flash interface parameters are different, the
following section explains how to define a custom flash interface.

Details of the flash device used to store the Boot Image and Data Partition data must be specified in both the
factory Boot Image and in any Data Partition files to ensure successful Factory programming and the ability
to execute a Device Firmware Upgrade (DFU) to upgrade the firmware.

4.10.1 Custom flash definition for factory programming

During the Factory programming procedure, using the XMOS XTAG debugger, the specification of the flash
device is used to create the loader which is responsible for downloading the Boot Image from flash and to
the device.

The flash specification is provided to xf1ash, as described in the Performing Firmware Updates section, using
a .spispec file. A representative .spispec file, which supports the majority of QSPI flash devices and the
Development Kits, is provided in the Release Package here:

\data-partition\16mbit_12.5mhz_sector_4kb.spispec

This is a text file and must be modified with any differing parameters. An example . spispec file is shown in
the Reference information section.

4.10.2 Custom flash definition for Data Partition generation

The .spispec file must also be included in the Data Partition, along with the sector size, so that DFU opera-
tions can be executed correctly.

45),

XVF3610 Voice Processor - User Guide

Warning: Due to the nature of the DFU function, it is critically important to test the execution of the DFU
process in a target system prior to production manufacturing.

411 SPI Slave Boot

Both UA and INT configurations of XVF3610 have a SPI Slave boot mode, in addition to the boot from flash
mode. The SPI Slave boot downloads the boot image in binary form. The release package includes the
necessary SPI boot images for all the variants.

Following an SPI boot the XVF3610 will not read any Data Partition that may be present in flash memory. If
the default values set in the SPI boot image must be updated, the necessary parameters must be configured
using the vfctrl host application after the device is booted.

The following section illustrates the use of the SPI boot files provided in the release packages.

4.11.1 SPI Boot of XVF3610-INT

When the XVF3610-INT boots via SPI, some parameters must be configured using the vfctrl_i2c application.
Two of these parameters are the divider between the MCLK_IN to PDM clock and the I12S sample rate. These
values must be set before the audio processing is started, and this can be done using a special configuration,
called delayed mode.

When using the delayed mode, the BOOTSEL pin is released before the firmware image is transferred to the
device. After the XVF3610-INT boots up, it checks the status of the BOOTSEL pin, if the pin is enabled it
proceeds with initialising the audio pipelines, if it is not, it waits for some specific control messages before
starting the audio processing. The messages to be used in delayed mode to start the audio processing and
interfaces are:

* SET_MIC_START_STATUS
* SET_I2S_START_STATUS

Below you can find an example of booting in delayed mode using the XVF3610-INT Release Package available
on the Raspberry Pi:

1. Using a terminal console on the Raspberry Pi, navigate to the location of the XVF3610-INT Release
Package.

2. Use the following command to transfer to the device the image of the XVF3610-INT firmware in the
Release Package (replacing vX_X_X with the appropriate version number):

python3 host/Pi/scripts/send_image_from_rpi.py bin/spi_boot/app_xvf3610_int_spi_
—boot_vX_X_X.bin --delay

The device should be ready within 3 seconds.

3. Update the divider from input master clock to 6.144MHz DDR PDM microphone clock using the Control
Utility vfctrl_i2c:

./host/Pi/bin/vfctrl_i2c SET_MCLK_IN_TO_PDM_CLK_DIVIDER 1

4. Update the IS rate if necessary, default value is 48000Hz, using the Control Utility vfctrl_i2c:

./host/Pi/bin/vfctrl_i2c SET_I2S_RATE 16000

5. Configure any system specific settings using the Control Utility vfctrl_i2c.

6. Start the audio processing and interfaces by issuing the following commands over the VocalFusion®
control utility:

46).

XVF3610 Voice Processor - User Guide

./host/Pi/bin/vfctrl_i2c SET_MIC_START_STATUS 1

./host/Pi/bin/vfctrl_i2c SET_I2S_START_STATUS 1

4.11.2 SPI Boot of XVF3610-UA

Using the XVF3610-UA Release Package available on the Raspberry Pi, a SPI boot can be executed by follow-
ing the steps below:

1. Using a terminal console on the Raspberry Pi, navigate to the location of the XVF3610-UA Release Pack-
age.

2. Use the following command to execute the SPI boot process booting the XVF3610-UA firmware in the
Release Package (replacing vX_X_X with the appropriate version number):

python3 host/Pi/scripts/send_image_from_rpi.py bin/spi_boot/app_xvf3610_ua_spi_boot_
~vX_X_X.bin

The device should be ready within 3 seconds.

Note: The delayed mode is not available for XVF3610-UA. This means that settings pertaining to the USB in-
terfaces, such as sample rates, bit widths, HID report descriptor and endpoint descriptor, cannot be modified.

4.11.3 Implementing a SPI Boot host application

The SPI boot process shown in the diagram below should be adhered to:

47),

48

XVF3610 Voice Processor - User Guide

Ty

Read SPI boot image

to buffer i

i Max SPI clock depends on
| xcore.ai core clock
SPl CLK==85MHz

L
B
A
L]
]
R

SPI Mode D
__| SPICLK5MHz
BOOTSEL=H

; RES_MN=L

This step forces /
xcaore to reset ',

Wait for xcore.ai to
exit reset.
2ms

[P

First Block sent

" 1st stage boot-loader .,

" executing from xcore. ai Boot ‘*..
ROM loads the 2nd stage i

.. loader contained in the first

block. -

P

 Wait for PLL and network setup.
'+ 100 mS

Nofte - setting a slow application
S i clock in the XN file will dictate
------ 1 the speed of the SPI inferface
from this point on.

............ 7

-
.
I
[
T
i
.
n

Send next block

1
mmm=——

e © Inter-block delay
i 1Im3

Yes

Tri-state SPI_CLK,
SPI_CS_Nand

SPI_MOSI

Fig. 4.2: SPI Boot process and timing requirements

XVF3610 Voice Processor - User Guide

Note: The phase locked loop (PLL) and netword setup needs enough time to settle after sending the first
block over SPI.

4.12 Configuration and the Data Partition

When using flash to boot the XVF3610 processor, the Data Partition can be used to store commands which
are executed immediately after boot-up to configure and define the functionality of the device. The following
sections describe the definition of the Data Partition, how to generate it, and the customisation for specific
applications.

4.12.1 Data Partition file structure

The contents of a Data Partition are defined in a .json file which is passed to a generation script which forms
the binary files used when flashing the device. The generation process is described below, after the definition
Json file is described.

For the purpose of explanation consider the following example for a custom XVF3610-UA Data Partition:

{

"comment": "Example Data Partition definition",
"spispec_path": "16mbit_12.5mhz_sector_4kb.spispec",
"regular_sector_size": "4096",
"hardware_build": "OxFFFFFFFF",
"item_files": [
{ "path": "input/usb_to_device_rate_48k.txt", "comment": "" },
{ "path": "input/device_to_usb_rate_48k.txt", "comment": "" },
{ "path": "input/usb_mclk_divider.txt", "comment": "'" },
{ "path": "input/xmos_usb_params.txt'", "comment": "' },
{ "path": "input/i2s_rate_16k.txt", "comment": "" },
{ "path": "input/led_after_boot.txt", "comment":"" }
]

}

Comment pairs are provided for the json configuration, but also the individual item files:

{ "comment": "Example Comment" }

A running VocalFusion® device needs to know size and geometry of its external QSPI flash in order to write
firmware upgrades to it. This is added to a Data Partition in the form of a flash specification or SPI specifica-
tion.

{ "spispec_path": "16mbit_12.5mhz_sector_4kb.spispec" }

The Data Partition generation process aligns various sections onto flash sectors, and needs to know the
sector size (this can be found in the flash device datasheet):

{ "regular_sector_size": "4096" }

Hardware build is a custom-defined, 32bit identifier written to flash along with the application firmware. It can
be used to define a unique identifier for the hardware revision or other information which cannot be overwritten
by subsequent updates:

{ "hardware_build": "OxFFFFFFFF" }

49 y,

XVF3610 Voice Processor - User Guide

Item files which contain the commands to execute (format of item files described below). An optional com-
ment field is provided:

{ "path": "input/usb_to_device_rate_48k.txt", "comment": "'" }

Note: Because the generator is a Python script, the paths use forward slashes irrespective of platform.

4.12.2 Item files

The item files contain the commands used to configure the system. The commands are simply added to
the file in the same format as the command line control utility. For clarity, multiple item files can be included
in the .json definition, each specifying a sub-set of commands relating to a particular function or aspect.
Example item files for common configurations are provided in the data-partition/input directory of the
release package. For example, the agc_bypass. txt item file bypasses the AGC for both output channels and
contains the following commands:

SET_ADAPT_CHO_AGC O
SET_ADAPT_CH1_AGC O
SET_GAIN_CHO_AGC 1
SET_GAIN_CH1_AGC 1

4.12.3 Generating a Data Partition for custom applications

It is recommended that in order to create a custom Data Partition, an existing set of json and item files is
used as a template and modified as required. The release package contains example .json and item files for
this purpose.

The required additional control commands should be stored in an appropriately named text file inside the
data-partition/input subdirectory. For example, a file named aec_bypass.txt could be added containing
the collected commands:

SET_BYPASS_AEC 1

Note: Only commands which are required to be set with non-default values need to be included in the item
file list.

These text files are then included in the custom JSON description.

In the above example, the aec_bypass.txt is added to a JSON description, bypass_AEC. json as shown
below:

"item_files": [
{

"path": "input/aec_bypass.txt",
"comment": ""

50 y,

XVF3610 Voice Processor - User Guide

Note: The execution order of the commands and input files can affect the behaviour of the device. Com-
mands to configure USB and I1°S should be added at the beginning of the data image.

Finally, to generate the custom Data Partition, the command below should be run from the data-partition
directory:

python3 xvf361x_data_partition_generator.py <build_type>.json

The generator script produces two data image files; one for factory programming and one for device upgrade
in a directory named output.

For the above example these files will be called:
data_partition_<build_type>_factory_v<release_version>.bin

and

data_partition_<build_type>_upgrade_v<release_version>.bin

These two binary files can be used to factory program or upgrade as described in Performing Firmware Up-
dates and Generation of Upgrade Image sections respectively.

A json file is also produced for debugging purposes.

51 y,

5 Device operation

To facilitate control of the XVF3610 and to allow the specification of the default behaviour, the XVF3610
implements two mechanisms for control and parameterisation. The first is the Control Interface which is a
direct connection between the host and the XVF3610 and is operational at runtime. The second is the Data
Partition which is held in flash and contains configuration data to parameterise the XVF3610 on boot up. Both
mechanisms can be used by a host application to control the behaviour of the device.

5.1 Host Utilities

There are seven host utilities provided in the XVF3610 Release Package as pre-compiled utilities and also as
source code to allow rebuilding for other system architectures. The utilities are summarised below:

vfctrl_usb, vfctrl_i2c - Vocal Fusion Control Utilities for the XVF3610-UA, XVF3610-INT respectively

data_partition_generator, vfctrl_json - Uses .json configuration definition and generates binary Data Partitions
for download to flash memory. vfctrl_json is used internally by the data_partition_generator but is referenced
here for completeness.

dfu_suffix_generator - Adds DFU suffix to binary Boot Images and binary Data Partitions to protect the device
from accidental DFU of incompatible image partition pair.

dfu_usb, dfu_i2c - DFU utilities for XVF3610-UA, XVF3610-INT respectively

The pre-compiled versions are found in the following platform sub-directories within the ‘host’ directory of the
Release Package:

+ ./Linux for Linux based systems
+ . /MAC for MacOS
+ ./Pi for Raspbian based Raspberry Pi systems

+ .\Win32 for Windows platforms

Note: For cross-platform support vfctrl_usb uses libusb. While this is natively supported in MacOS and most
Linux distributions, it requires the installation of a driver for use on a Windows host. Driver installation should
be done using a third-party installation tool like Zadig (https://zadig.akeo.ie/).

5.1.1 Building the host utilities from source code

The source code for these utilities is provided in the following directory:
/host/src
The steps to build each utility are described in the Release Package here:

/host/how_to_build_host_apps.rst
5.2 Command-line interface (vfctrl)

To allow command-line access to the control interface on the XVF3610 processor, the vfetrl (VocalFusion
Control) utility is provided as part of the release package.

52 y,

https://zadig.akeo.ie/

XVF3610 Voice Processor - User Guide

Two versions of this utility are provided for control of the device (a third is used internally by the Data Partition
generation process):

Table 5.1: vfctrl versions and platforms

Version Function Host platforms supported
vfctrl_usb Control of XVF3610-UA over a USB inter- Windows - MacOS - Linux - Raspberry Pi 0S
face

vfctrl_i2c Control of XVF3610-INT over I°C interface Raspberry Pi 0S

Source code for the utility is also provided for compilation for other host devices if required.

5.3 vfctrl Installation

Control and configuration of the XVF3610-UA are achieved via the control interface implemented over USB.
A VocalFusion® Host Control application, vfctrl_usb, is provided pre-compiled and as source code for this
purpose.

For cross-platform support vfctrl_usb uses libusb. While this is natively supported in MacOS and most Linux
distributions, it requires the installation of a driver for use on a Windows host. Driver installation should be
done using a third-party installation tool like Zadig (https://zadig.akeo.ie/).

The following steps show how to install the libusb driver using Zadig:
1. Connect the XVF3610 board to the host PC using a USB cable.

2. Open Zadig and select XMOS Control (Interface 3) from the list of devices. If the device is not present,
ensure Options -> List All Devices is checked.

3. Select libusb-win32 from the list of drivers.
4. Click the Reinstall Driver button

5 Zadig - X

Device Options Help

XMOS Control (Interface 3) w |] Edit
Driver | (NONE) = | lbusb-win32 (v1.2.6.0) = More Information
WinlSB (libush)
USBEID | 20B1 | 0016 | O3 libush-win32
, Install Driver - libushk,
WCID = EI WinUSE (Microsoft)

10 devices found.

Fig. 5.1: Selecting the libusb driver in Zadig

53

https://zadig.akeo.ie/

XVF3610 Voice Processor - User Guide

Once installed the vfctrl_usb utility is ready to use. The following steps explain how to use the host control
utility.

1. Copy the host directory of the Release Package to the host platform.

2. Navigate, from a terminal window, to the copied host directory and execute one of the commands,
depending on the specific platform, as described in the next section.

5.4 vfctrl syntax

Note: The examples below are written for the UA variants, if using the INT variant, please replace vfctrl_usb
with vfetrl_i2c

The general syntax of the command line tool, when used for device control, is as follows:

victrl_usb <COMMAND> [arg 1] [arg 2]....[arg N] ['# Comment']

The <COMMAND> is required and is used to control the parameters of the device. Each command either reads
or writes parameters to the XVF3610 device. Commands that read parameters begin with GET_. Commands
that write parameters begin with SET_.

Note: The <COMMAND:> verb is case insensitve, e.g. GET_VERSION and get_version are equivalent and both
supported

The available commands are described in detail in the vfctrl command list section, and a summary table of
all the parameters is provided.

If the <COMMAND> is a GET_ command, the output of the operation is printed to the terminal as in the example
below:

victrl_usb GET_GPI
GET_GPI: 13

The number and type of arguments, [arg 1]..[arg N], depend on the command and these are detailed in the
command tables. All arguments are integer or floating-point numbers separated by a space. All the values are
transferred to the device as integers and the host utility converts the floating-point values to the appropriate
Q format.

The specification of the Q format for representing floating-point numbers is given in Q format conversion
section.

A secondary form of vfctrl_usb is also available which provides information for developers:

vifctrl_usb [options]

Where [options] can be:

-h, --help : Print help menu

-H, --help-params: Print help menu and the list of all available commands

-d, --dump-params : Print the values of the parameters configured in the device
-n, --no-check-version : Do not check version of firmware image

-f, --cmd-list <filename> : Execute the commands in the given <filename>

54),

XVF3610 Voice Processor - User Guide

Note: For the last option the filename should be a text file with one command per line. The format is the
same as the Data Partition generator input files.

5.5 Configuration via Control interface

The XVF3610 Voice Processor contains parameters which can be read and written by the host processor at
run time. For information about writing parameters at boot time for initial configuration, please see Configu-
ration via Data Partition

The XVF3610 firmware is provided as two pre-compiled builds, UA and INT, which provide a parameter control
mechanism over USB endpoint 0 and 1°C respectively.

Device functions have controllable parameters for the audio pipeline, GPIO, sample rate settings, audio mux-
ing, timing and general device setup and adjustment. Commands support either read using the GET_ prefix
or write using the SET_ prefix. Controllable parameters may either be readable and writeable, read-only or
write-only. Various data types are supported including signed/unsigned integer of either 8b, 32b or 64b and
fixed-point signed/unsigned.

Note: The fixed-point values must be input as decimal or floating-point values, the host application will
perform the necessary conversion.

In addition, the UA and UA-HYBRID builds include volume controls for input (processed microphone from
XVF3610). The UA build has similar controls for the output (far-end reference signal) too. These are USB Audio
Class 1.0 compliant controls and are accessed via the host OS audio control panel instead of the XVF3610
control interface. The volumes are initialised to 100% (0dB attenuation) on device power up, which is the
recommended setting.

It is recommended that the USB Audio input and output volume controls on the host are set to 100% (no
attenuation) to ensure proper operation of the device. Some host 0S (e.g. Windows) may store volume
setting in between device connections.

For a comprehensive list of parameters, their data types and an understanding of their function within the
device please consult the Reference information section. The full list of commands can be obtained through
the use of the -H or --help-params option of the control utility:

victrl_usb --help-params

This dumps a list of commands to the console along with a brief description of the function of each command.
The remainder of this section will cover the generic operation of the control interface.

5.5.1 Control operation

The control interface works by sending a message from the host to the control process within the XVF3610
device. The time required to execute commands can vary, but most will respond within 30ms. Since the
commands are fully acknowledged, by design, the control utility blocks until completion. This interface is
designed to allow real-time tuning and adjustment but may stall due to bus access or data retrieval.

The control interface consists of two parts, a host side application and the device application. These are
briefly summarised below.

5.5.2 Host Application

The example host applications, found in the /host directory in the Release Package, are command-line util-
ities that accept text commands and, in the case of a read, they provide a text response containing the read

55 y,

XVF3610 Voice Processor - User Guide

parameter(s). Full acknowledgement is included in the protocol and an error is returned in the case of the
command not being executed properly or handled correctly by the device.

Example host source code and makefiles are provided in the release package for x86 Linux, ARM Linux (Rasp-
berry Pi), Windows and MacOS platforms along with pre-compiled executables to allow fast evaluation and
integration. For more information refer to the Building the host utilities from source code section.

5.5.3 Device Application

The device is always ready to receive commands. The device includes command buffering and an asyn-
chronous mechanism which means that Endpoint 0 NACKing for USB, or clock stretching for 12C, is not re-
quired. This simplifies the host requirements particularly in the cases where clock stretching is not supported
by the host I°C peripheral.

5.6 Configuration via Data Partition

The XVF3610 device flash firmware configuration comprises a Boot image and a Data Partition.

+ The Boot image in the form of an .xe archive is the executable code. It is provided as part of the
XVF3610-UA or XVF3610-INT Release Package. This configures the underlying operation of the device.

- The Data Partition configures a running Boot image instance at startup with a set of commands which
are customisable for the specific application. This contains any command that can be issued at run-
time via USB or I2C, plus some more that are boot-time only. Pre-configured Data Partitions are supplied
in the release packages for default operation.

This combination of Boot image and Data Partition allow the functionality of the processor to be configured
and defined without requiring any modification or recompilation of base firmware. The commands stored in
the Data Partition are executed at startup redefining the default operation of the device. More information
about the Data Partition can be found in the Configuration and the Data Partition.

56 y,

6 USB Interface - (XVF3610-UA and XVF3610-UA-HYBRID only)

The XVF3610-UA variants support a standard USB PHY interface which supports a UAC1.0 audio device and
device control over USB.

In addition the product supports a standard USB HID (Human Interface Device) that can be used to signal the
host device when events are detected on the XVF3610 device inputs.

6.1 USB Interface

The following section details aspects that relate to the USB interface configuration and usage. This section
only pertains to the XVF3610-UA and XVF3610-UA-HYBRID variants of the processor.

The USB interface provides the host the endpoints below:

+ Adaptive USB Audio Class 1.0 endpoints for the transfer and volume control of far-field voice to the host
(for both XVF3610-UA and XVF3610-UA-HYBRID variants) and AEC reference audio from the host (for
XVF3610-UA only).

- Vendor Specific Control allowing the host to control, parameterise and upgrade the processor. This
functionality uses Endpoint 0.

+ Human Interface Device (HID) interrupt In endpoint to signal the detection of events which have oc-
curred on the GPIOs.

The USB Audio interface supports class compliant volume controls on both the input (processed microphone
from XVF3610) and output (AEC reference) interfaces. These controls are accessed via the host 0S audio
control panels. They are initialised to 100% (0dB attenuation) on boot and this is the recommended setting
for normal device operation.

By default the device will enumerate with the VID and PID shown below, but these can be configured using
the Data Partition.

Table 6.1: Default XVF3610 USB Identification

USB Identification Value
Vendor Identification (VID) 0x20BT
Product Identification (PID) 0x0016

Warning: If XVF3610 users change the PID value in the Data Partition, they must also change the XMOS
VID to their own VID to avoid clashes with other XMOS products.

The following section describes the parameters available to configure the USB interface behaviour.

6.2 USB Configuration

Due to the nature of the USB enumeration process, USB setup must be done using a Data Partition so that
the configuration is complete prior to enumeration. The following table summarises the USB interface pa-
rameters which can be configured.

57 y,

XVF3610 Voice Processor - User Guide

Table 6.2: USB configuration parameters

Command Type Argu- Definition
ments
GET_USB_VENDOR_ID uint32 1 Get / set USB Vendor ID. See notes A and B
SET_USB_VENDORL_ID
GET_USB_PRODUCT_ID uint32 1 Get / set USB Product ID. See notes A and B
SET_USB_PRODUCT_ID
GET_USB_BCD_DEVICE uint32 1 Get / set USB Device Release Number (bcdDe-
SET_USB_BCD_DEVICE vice). See notes A and B
GET_USB_VENDOR_STRING uint8 25 Get / set USB Vendor string. See notes A and
SET_USB_VENDOR_STRING B
GET_USB_PRODUCT_STRING uint8 25 Get / set USB Product string. See notes A and
SET_USB_PRODUCT_STRING B
GET_USB_SERIAL_NUMBER uint32 1 Get / set write-only register to set the be-
SET_USB_SERIAL_NUMBER haviour of iSerialNumber field in USB descrip-
tor. See notes A and B
GET_USB_TO_DEVICE_RATE uint32 1 Get / set sampling frequency of USB reference
SET_USB_TO_DEVICE_RATE from USB host. Default usb_to_device_rate is
48000 samples/sec. See notes A and B
GET_DEVICE_TO_USB_RATE uint32 1 Get / set sampling frequency of audio out-
SET_DEVICE_TO_USB_RATE put to USB host. Default device_to_usb_rate
is 48000 samples/sec. See notes A and B
GET_USB_TO_DEVICE_BIT_RES uint32 1 Get / set bit depth of USB reference from USB
SET_USB_TO_DEVICE_BIT_RES host. Default usb_to_device_bit_res is 16 bits.
See notes Aand B
GET_DEVICE_TO_USB_BIT_RES uint32 1 Get / set bit depth of audio output to USB host.
SET_DEVICE_TO_USB_BIT_RES Default device_to_usb_bit_res is 16 bits. See
notes Aand B
GET_USB_START_STATUS uint8 1 Get / set start USB flag. Set as 1 as the last
SET_USB_START_STATUS USB item in Data Partition. See note A

A: Command supported for Data Partition use only
B: Command must occur before SET_USB_START_STATUS 1

6.3 USB HID interface

Note: The HID Usage and Usage Page ID’s discussed in this section must match the values in the standard
HID Usage Tables.

A Human Interface Device (HID) is an electronic device with an interface which a human can use for control.
Examples include a Personal Computer with a keyboard and mouse or a consumer appliance with control
knobs, push buttons or a voice interface.

The XVF3610-UA uses the HID interface to inform the host system of events which have occurred on the
General Purpose Inputs (GPI). The following section describes the setup of the GPI HID triggers.

6.4 HID Report configuration

The XVF3610 can send a HID Report when a GPI pin detects an interrupt (logic edge transition event). The
HID features are described below:

58 y,

https://www.usb.org/sites/default/files/hut1_4.pdf

XVF3610 Voice Processor - User Guide

+ The XVF3610 supports three HID Reports, one each for keyboard, consumer and telephony events
+ Each HID Report supports detection and reporting of multiple events

+ Control commands allow configurable mapping between each GPI pin and each non-reserved HID Re-
port bit

+ Control commands allow boot-time configuration of the meaning (USB HID usage) assigned to each
non-reserved HID Report bit

Table 6.3: USB HID Report 1

USB HID Bit 7 6 5 4 3 2 1 0
Usage Byte

Page

Key- 0 Rsvd Rsvd Rsvd Rsvd F24 F23 F22 T
board

Table 6.4: USB HID Report 2

USB HID Bit 7 6 5 4 3 2 1 0
Usage Byte
Page
Con- 0 Volume- Vol- Rsvd Voice Rsvd Mute AC AC Stop
sumer ume+ Com- Search

mand

Table 6.5: USB HID Report 3

USB HID Bit 7 6 5 4 3 2 1 0
Usage Byte

Page

Tele- 0 Rsvd Rsvd Rsvd Rsvd Rsvd Rsvd Phone Hook
phony mute switch

6.5 USB HID report format

A USB HID device describes each field in each HID Report by sending a HID Report Descriptor to the USB
host when requested. Information sent to the USB host for each field establishes the field’s contents and its
method of operation. This information includes a code, known as the Usage ID, which defines the field's exact
meaning. To allow for reuse of the limited number of code values across many different types of devices, the
information also includes another code, known as the Usage Page ID, which qualifies the meaning of the
Usage ID.

The XVF3610 defines a default Usage Page ID and Usage ID for each bit in the HID Report as seen in the
default HID Report tables. It also supports changes to the Usage ID for each non-reserved bit at boot-time via
the Data Partition. Changes to the Usage Page ID are not supported, and each byte in a HID Report pertains
to a specific Usage Page ID as shown in the table below.

59 y,

XVF3610 Voice Processor - User Guide

Table 6.6: USB HID report usage page

HID Report id Usage Page Usage Page ID
1 Keyboard 7

2 Consumer Control 12

3 Telephony i

To change the meaning of a bit in a HID Report, include the SET_HID_USAGE_HEADER and SET_HID_USAGE
commands inthe Data Partition. For example, the following commands issued from the Data Partition change
the meaning of byte 0 bit Tin HID Report 2 from Application Control (AC) Search to Media Select Telephone:

SET_HID_USAGE_HEADER 2 0 1 12
SET_HID_USAGE 9 140

The SET_HID_USAGE_HEADER command establishes HID Report 2, byte 0, bit 1 as the target location for the
subsequent operation. Its first, second and third arguments make the subsequent SET_HID_USAGE command
target HID Report 2, byte 0 and bit 1, respectively. Its fourth argument specifies the Consumer Control Usage
Page as the qualifier for the subsequent SET_HID_USAGE command. The SET_HID_USAGE command changes
the meaning of the HID Report byte and bit targeted by the most recent SET_HID_USAGE_HEADER command,
byte 0 and bit 1in this example. Its first argument determines the number of bytes required to store the second
argument. The value 9 specifies a one-byte value (less than 256). The number 10 specifies a two-byte value
(lessthan 65536). The XVF3610 does not support length values greater than two bytes. The second argument
to the SET_HID_USAGE command specifies the Usage ID to associate with the targeted HID Report byte and
bit. In this example, the one-byte value 140 (0x8C) changes the meaning of HID Report 2, byte 0, bit 1to Media
Select Telephone.

Note: Changes to HID usage can occur only at boot-time via the Data Partition. The SET_HID_USAGE com-
mand has no effect when received after the boot process completes and USB operation begins.

Note: The HID Report ID (argument 1) and the HID Usage Page (argument 4) in SET_HID_USAGE_HEADER
must match the values in column 1 and 3 of Table 6.6: for report ID 1, the fourth argument must be 7, for
report ID 2 it must be 12, and for report ID 3 it must be 11.

6.6 HID report generation

The XVF3610 can send a HID Report when a GPI pin detects an interrupt (logic edge transition event). When
interrupts are enabled using SET_GPI_INT_CONFIG, the HID Report generator automatically services the in-
terrupt generating a new report. The HID generation features are listed below:

+ The HID Report changes upon assertion (positive edge) or de-assertion (negative edge) of a GPI pin.
- Each HID Report supports detection and reporting of multiple events.

+ Control commands allow configurable mapping between each GPI pin and each non-reserved HID Re-
port bit.

+ The active level of the GPI pins is configurable and all the GPI pins are set active high by default. If
the GPI pin is active high, each positive edge asserts a bit in a HID Report; de-assertion of the bit is
enabled by the GPI pin negative edge or by an optional timeout; sending the HID Report to the USB host
de-asserts each bit previously enabled for de-assertion.

+ The same GPI pin can send two different HID reports in two consecutive assertions.

60 p,

XVF3610 Voice Processor - User Guide

+ When no event has occurred, depending on “set idle” configuration by the host, by default the XVF3610
will either reply with a de-assert report (default) or NAK (set to idle by the host). The XVF3610 can
optionally configure “set idle” to indefinite duration.

Note: HID idle behaviour is platform-specific and rarely does the high-level application code have any control
over the settings. Linux, for example, typically silences the devices by issuing an indefinite idle (NAK report if
no change). Other platforms such as MacQS, on the other hand, leave the device verbose by not issuing an
idle (report always sent).

The HID Report generator requires configuration of each GPI pin mapped to a HID Report bit to generate
interrupts on both edges.

The default mapping between GPI pins and HID Report bits is:

Table 6.7: GPI pins and HID Report bits mapping

GPI Pin HID Report bit
0 F23

1 F24

2 None

3 None

6.6.1 Configure GPI pins

Use the SET_GPI_INT_CONFIG command to configure a GPI pin that triggers a change in a HID Report. For
example, the following command configures GPI pin 0 to generate interrupts on both edges, which enables
the HID Report logic:

SET_GPI_INT_CONFIG O O 3

The first argument identifies the HID map, and is set to 0 for this example. The second argument makes the
command target pin IP_0. The third argument selects both edges for the interrupt.

Use the SET_GPI_PIN_ACTIVE_LEVEL command to configure the interpretation of signal edges for the GPI
pin. For example, the following command configures GPI pin 0 so that the XVF3610 interprets a falling edge
as the positive (asserting) edge and a rising edge the negative (de-asserting) edge:

SET_GPI_PIN_ACTIVE_LEVEL O O O

The first argument identifies the HID map, and it is set to O for this example. The second argument makes
the command target pin IP_0. The third argument configures the XVF3610 to treat IP_0 as active low (use 1
to configure as active high).

Note: All the GPI pins are set active high by default, i.e. XVF3610 interprets a rising edge as the positive
(asserting) edge and a falling edge the negative (de-asserting) edge.

The Data Partition allows changes to the mapping of GPI pins to HID Report bits at boot-time using the
SET_HID_MAP_HEADER and SET_HID_MAP commands. They may also be used with vfctrl to change the map-
ping after the boot process completes and USB operation begins.

6.6.2 HID map alternation

The XVF3610 has two mappings between GPI pins and HID report bits, the first one (main) is used by default
and the second one (alt) is used when HID map alternation is enabled. If alternation is enabled the XVF3610

61 y,

XVF3610 Voice Processor - User Guide

swaps the mappings after each GPI pin assertion, regardless of the pin. See an example application of the
alternation in the Implementation of a slide switch. The HID map alternation is disabled by default and it can
be enabled from the Data Partition or at runtime with the vfctr! host application, by using the command:

SET_HID_MAP_ALTERNATION_ENABLED 1

The map alternation allows assignment of two different HID events to one GPI pin. For example a
mute/unmute button.

Note: The alternation is enabled for all the HID reports, therefore the mapping swaps after each pin assertion,
regardless of the pin. Due to this limitation, using alternation with more than one GPI pin enabled may produce
unexpected behaviour by the XVF3610.

6.6.3 Example of modifying default mapping between pin and HID report

Below you can find an example to modify the mapping between a GPI pin and a HID report, the following
commands change the mapping so that an interrupt on pin IP_1 results in the XVF3610 reporting a Voice
Command instead of an F24:

SET_HID_MAP_HEADER O 1
SET_HID_MAP 2 0 4

The SET_HID_MAP_HEADER command establishes the GPI pin for subsequent mapping operations. Its first
argument is reserved and should be set to 0. Its second argument makes the subsequent SET_HID_MAP
command target pin IP_1. The SET_HID_MAP command changes the association between the GPI pin targeted
by the most recent SET_HID_MAP_HEADER command, IP_Tin this example, and the control bits in a HID Report.
Its three arguments identify the HID Report and state the byte and bit within that report, to associate with the
targeted GPI pin. In this example, HID Report 2, byte 0, bit 4 associates the Voice Command control bit with
IP_1 as can be seen in the default HID Report table.

Note: The XVF3610 will ignore a SET_HID_MAP command that specifies a reserved bit in the HID Report.

6.6.4 HID sequencer

The HID mapping includes a sequencer for each GPI pin. When it is enabled, the XVF3610 automatically de-
asserts an asserted bit in the associated HID report after 50 ms, without waiting for a change in the level of
the GPI pin. Each sequencer is disabled by default, and it can be enabled from the Data Partition or at runtime
with the vfctrl host application, by using the command:

SET_HID_MAP_SEQUENCER_ENABLED 1

This command is applied to the GPI pin targeted by the most recent SET_HID_MAP_HEADER command.

Note: When the sequencer is enabled, there is an idle period after the de-assertion, where no trigger is
processed. This period is 1 ms long.

Note: If the sequencer is used in combination with the HID map alternation, it must be enabled for both the
main and alternative mappings.

62 p,

XVF3610 Voice Processor - User Guide

6.6.5 Indefinite duration of HID set idle

The HID “set idle” configuration can be forced to indefinite duration, i.e. no report is sent periodically, by using
the command SET_HID_IDLE_INDEFINITE_DURATION. This command is applied to the HID report targeted by
the most recent SET_HID_USAGE_HEADER command. To disable all periodic reports, use the following com-
mands:

SET_HID_USAGE_HEADER 1 0 0 O
SET_HID_IDLE_INDEFINITE_DURATION O
SET_HID_USAGE_HEADER 2 0 O O
SET_HID_IDLE_INDEFINITE_DURATION O
SET_HID_USAGE_HEADER 3 0 0 O
SET_HID_IDLE_INDEFINITE_DURATION O

Any value, including zero, enables the indefinite duration of the set idle. This command can be included in
the Data Partition or sent at runtime with the vfctrl host application. This operation is not reversible. In case a
user wants to disable the indefinite duration, if the commands are in the Data Partition, an updated partition
must be stored in the flash and the XVF3610 must be rebooted; if the commands are sent via the vfctrl host
application, the device must be rebooted.

6.6.6 Implementation of a slide switch

This section configures GPI pin 0 (IP_0), i.e. the one connected to the slide switch on the XK-VOICE-L71 board:

+ To send a HID event signalling a ‘w’ key press when the switch moves from the mute position to the
un-mute position, and

+ To send a HID event signalling an ‘x’ key press when the switch moves from the un-mute position to the
mute position.

Note: Allthe commands below must be included in a Data Partition, as some of them don't have effect when
running them from the vfctrl host application.

The HID feature of the XVF3610 is configured to alternate between two GPI maps, the main map and the
alternative map, for each slide switch level change. The main map has GPI 0 associated with HID report 1,
byte 0, bit 2 which is configured as a ‘W’ key. The alternative map has GPI 0 associated with HID report 1, byte
0, bit 1 which is configured as an ‘X’ key.

The full list of commands is below:
1. Configure GPI pin 0 to be active low and enable interrupt on both rising and falling edge for GPI pin 0
SET_GPI_PIN_ACTIVE_LEVEL 0 0 0
SET_GPI_INT_CONFIG O O 3

2. Map GPI pin 0 of the main map (0) to bit 2 of HID report 1, and enable sequencing so that a change in
pin level triggers a one-shot:

SET_HID_MAP_HEADER O 0
SET_HID_MAP 1 0 2
SET_HID_MAP_SEQUENCER_ENABLED 1

3. Change the meaning of bit 2 in HID report 1to usage page 7 (keyboard) and usage 26 (character ‘w’):

SET_HID_USAGE_HEADER 1 0 2 7
SET_HID_USAGE 9 26

4. Map GPI pin 0 of the alternative map (1), to bit T of HID report 1and enable sequencing so that a change
in pin level triggers a one-shot:

63 p,

XVF3610 Voice Processor - User Guide

SET_HID_MAP_HEADER 1 0O
SET_HID_MAP 1 0 1
SET_HID_MAP_SEQUENCER_ENABLED 1

5. Change the meaning of bit 1in HID report 1to usage page 7 (keyboard) and usage 27 (character 'x):

SET_HID_USAGE_HEADER 1 0 1 7
SET_HID_USAGE 9 27

6. Enable alternation between the main and alternative maps. This command applies to all GPI pins:

SET_HID_MAP_ALTERNATION_ENABLED 1

6.7 Serial Number

The XVF3610 allows a 24 ASCII character long serial number to be stored in the external flash memory. This
can be accessed using the VocalFusion Control application using the following commands. To write to the
SERIAL_NUMBER field use:

victrl_usb SET_SERIAL_NUMBER "DEADBEEF"

and to read use:

victrl_usb GET_SERIAL_NUMBER

6.8 USB device enumeration

The XVF3610-UA additionally allows the Serial Number to be copied into the iSerialNumber field of the USB
descriptor. As the host reads the USB descriptor on enumeration the command to copy the serial number
must be present in the Data Partition. To illustrate this process the following commands must be incorporated
into a Data Partition in the specified order (example assumes SERIAL_NUMBER field is already populated).

To set the USB configuration to use the serial number in the descriptor add the following lines, in this order,
to the Data Partition:

SET_USB_SERIAL_NUMBER 1

To set the USB configuration, then to start enumeration:

SET_USB_START_STATUS 1

64).

7 Reference information

7.1 Base vfctrl command list

The table below summarises the XVF3610 parameters which are programmable via the control interfaces or
flash Data Partition. These parameters allow the setup of the XVF3610 processor’s interfaces and tuning of
the internal signal processing.

To aid quick reference of the key parameters, the summary is split into two sections. This section details the
most frequently used parameters which are required for interface configuration and basic control, and the
second details advanced parameters which will not generally need to be modified.

The XVF3610 version 5.7 supports the following commands for configuration, control and diagnostics.

Group

Command

Num-
ber of
Values

UA Default

INT Default

ADMIN

GET_HARDWARE_BUILD

7

GET_RUN_STATUS

7

GET_SERIAL_NUMBER

26

SET_SERIAL_NUMBER

26

GET_VERSION

—_

AEC

GET_BYPASS_AEC

SET_BYPASS_AEC

AGC

GET_ADAPT_CHO_AGC

GET_ADAPT_CH1_AGC

GET_GAIN_CHO_AGC

53.8407

71.1364

GET_GAIN_CH1_AGC

422.3719

432.6752

AUDIO

GET_ADEC_ENABLED

0

0

SET_ADEC_ENABLED

GET_ADEC_MODE

GET_ALT_ARCH_ENABLED

SET_ALT_ARCH_ENABLED

GET_BYPASS_IC

SET_BYPASS_IC

GET_BYPASS_SUP

ol o o]

ol tlol ol

SET_BYPASS_SUP

SET_DELAY_DIRECTION

GPIO

GET_GPI_PIN

SET_GPI_PIN_ACTIVE_LEVEL

GET_GPI_PORT

GET_GPI_READ_HEADER

lolol ol

"lolol Vol

SET_GPI_READ_HEADER

SET_GPO_FLASHING

SET_GPO_PIN

SET_GPO_PIN_ACTIVE_LEVEL

SET_GPO_PORT

SET_GPO_PWM_DUTY

SET_IO_MAP

GET_IO_LMAP_AND_SHIFT

SET_OUTPUT_SHIFT

USB

GET_DEVICE_TO_USB_BIT_RES

= N N N W N W] W W NN = w| =] = = =] = == === === ==

32

65

continues on next page

XVF3610 Voice Processor - User Guide

Table 7.1 — continued from previous page

Group Command Num- UA Default | INT Default
ber of
Values

SET_DEVICE_TO_USB_BIT_RES 1 - -
GET_DEVICE_TO_USB_RATE 1 48000 48000
SET_DEVICE_TO_USB_RATE 1 - -
GET_USB_PRODUCT_ID 1 22 22
SET_USB_PRODUCT_ID 1 - -
GET_USB_PRODUCT_STRING 26 XVF3610 XVF3610 Voice Pro-

Voice Pro- | cessor

cessor
SET_USB_PRODUCT_STRING 26 - -
SET_USB_SERIAL_NUMBER 1 - -
GET_USB_TO_DEVICE_BIT_RES 1 16 32
SET_USB_TO_DEVICE_BIT_RES 1 - -
GET_USB_TO_DEVICE_RATE 1 48000 48000
SET_USB_TO_DEVICE_RATE 1 - -
GET_USB_VENDOR_ID 1 8369 8369
SET_USB_VENDOR_ID 1 - -
GET_USB_VENDOR_STRING 26 XMOS XMOS
SET_USB_VENDOR_STRING 26 - -

7.2 Advanced vfctrl command list

The XVF3610 version 5.7 supports the following additional commands for advanced configuration and diag-

nostics.

Group

Command

Num-
ber of
Values

UA Default

INT Default

ADMIN

GET_BLD_HOST

30

GET_BLD_MODIFIED

6

GET_BLD_MSG

50

GET_BLD_REPO_HASH

7

GET_BLD_XGIT_HASH

~

GET_BLD_XGIT_VIEW

o

GET_DELAY_SAMPLES

SET_DELAY_SAMPLES

GET_STATUS

AEC

GET_ADAPTATION_CONFIG_AEC

SET_ADAPTATION_CONFIG_AEC

GET_COEFF_INDEX_AEC

SET_COEFF_INDEX_AEC

GET_ERLE_CHO_AEC

GET_ERLE_CH1_AEC

GET_F_BIN_COUNT_AEC

GET_FILTER_COEFFICIENTS_AEC

al NN = = = = =] = =lu;
(@]

~

GET_FORCED_MU_VALUE_AEC

SET_FORCED_MU_VALUE_AEC

GET_FRAME_ADVANCE_AEC

GET_MU_LIMITS_AEC

N = = —

1.0000
0.0001

1.0000
0.0001

66

continues on next page

Table 7.2 — continued from previous page

XVF3610 Voice Processor - User Guide

Group Command Num- UA Default INT Default

ber of

Values
SET_MU_LIMITS_AEC 2 - -
GET_MU_SCALAR_AEC 1 2 2
SET_MU_SCALAR_AEC 1 - -
RESET_FILTER_AEC 1 - -
GET_SIGMA_ALPHAS_AEC 3 5511 5511
SET_SIGMA_ALPHAS_AEC 3 - -
GET_X_CHANNEL_PHASES_AEC 10 -
GET_X_CHANNELS_AEC 1 - -
GET_X_ENERGY_DELTA_AEC 1 0.000000dB | 0.000000dB
SET_X_ENERGY_DELTA_AEC 1 - -
GET_X_ENERGY_GAMMA_LOG2_AEC 1 6 6
SET_X_ENERGY_GAMMA_LOG2_AEC 1 - -
GET_Y_CHANNELS_AEC 1 -

AGC SET_ADAPT_CHO_AGC 1 -
SET_ADAPT_CH1_AGC 1 - -
GET_ADAPT_ON_VAD_CHO_AGC 1 1 1
SET_ADAPT_ON_VAD_CHO_AGC 1 - -
GET_ADAPT_ON_VAD_CH1_AGC 1 1 1
SET_ADAPT_ON_VAD_CH1_AGC 1 - -
GET_DECREMENT_GAIN_STEPSIZE_CHO_AGC 1 0.87 0.87
SET_DECREMENT_GAIN_STEPSIZE_CHO_AGC 1 - -
GET_DECREMENT_GAIN_STEPSIZE_CH1_AGC 1 0.988 0.988
SET_DECREMENT_GAIN_STEPSIZE_CHT_AGC 1 - -
SET_GAIN_CHO_AGC 1 -
SET_GAIN_CH1_AGC 1 - -
GET_INCREMENT_GAIN_STEPSIZE_CHO_AGC 1 1.197 1.197
SET_INCREMENT_GAIN_STEPSIZE_CHO_AGC 1 - -
GET_INCREMENT_GAIN_STEPSIZE_CHT_AGC 1 1.0034 1.0034
SET_INCREMENT_GAIN_STEPSIZE_CH1_AGC 1 - -
GET_LC_CORR_THRESHOLD_CHO_AGC 1 0 0
SET_LC_CORR_THRESHOLD_CHO_AGC 1 - -
GET_LC_CORR_THRESHOLD_CH1_AGC 1 0.993 0.993
SET_LC_CORR_THRESHOLD_CH1_AGC 1 - -
GET_LC_DELTAS_CHO_AGC 3 0.0000 0.0000

0.0000 0.0000
0.0000 0.0000
SET_LC_DELTAS_CHO_AGC 3 - -
GET_LC_DELTAS_CH1_AGC 3 299.9954 299.9954
499992 49,9992
99.9985 99.9985
SET_LC_DELTAS_CH1_AGC 3 - -
GET_LC_ENABLED_CHO_AGC 1 0 0
SET_LC_ENABLED_CHO_AGC 1 - -
GET_LC_ENABLED_CH1_AGC 1 1 1
SET_LC_ENABLED_CH1_AGC 1 - -
GET_LC_GAINS_CHO_AGC 4 0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
SET_LC_GAINS_CHO_AGC 4 - -
continues on next page
67

Table 7.2 — continued from previous page

XVF3610 Voice Processor - User Guide

Group Command Num- UA Default INT Default
ber of
Values
GET_LC_GAINS_CH1_AGC 4 1.0000 1.0000
0.9000 0.9000
0.1000 0.1000
0.0224 0.0224
SET_LC_GAINS_CH1_AGC 4 - -
GET_LC_GAMMAS_CHO_AGC 3 0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
SET_LC_GAMMAS_CHO_AGC 3 - -
GET_LC_GAMMAS_CH1_AGC 3 1.0020 1.0020
1.0050 1.0050
0.9950 0.9950
SET_LC_GAMMAS_CH1_AGC 3 - -
SET_LC_N_FRAMES_CHO_AGC 2 - -
GET_LC_N_FRAMES_CH1_AGC 2 17 34 17 34
SET_LC_N_FRAMES_CH1_AGC 2 - -
GET_LOWER_THRESHOLD_CHO_AGC 1 0.1905 0.1905
SET_LOWER_THRESHOLD_CHO_AGC 1 - -
GET_LOWER_THRESHOLD_CH1_AGC 1 0.4 04
SET_LOWER_THRESHOLD_CH1_AGC 1 - -
GET_MAX_GAIN_CHO_AGC 1 999.9847 999.9847
SET_MAX_GAIN_CHO_AGC 1 - -
GET_MAX_GAIN_CH1_AGC 1 999.9847 999.9847
SET_MAX_GAIN_CH1_AGC 1 - -
GET_MIN_GAIN_CHO_AGC 1 0 0
SET_MIN_GAIN_CHO_AGC 1 - -
GET_MIN_GAIN_CH1_AGC 1 0 0
SET_MIN_GAIN_CH1_AGC 1 - -
GET_SOFT_CLIPPING_CHO_AGC 1 1 1
SET_SOFT_CLIPPING_CHO_AGC 1 - -
GET_SOFT_CLIPPING_CH1_AGC 1 1 1
SET_SOFT_CLIPPING_CH1_AGC 1 - -
GET_UPPER_THRESHOLD_CHO_AGC 1 0.7079 0.7079
SET_UPPER_THRESHOLD_CHO_AGC 1 - -
GET_UPPER_THRESHOLD_CH1_AGC 1 0.4 0.4
SET_UPPER_THRESHOLD_CHT1_AGC 1 - -

AUDIO | GET_ADEC_FAR_THRESHOLD 1 0.000002 dB | 0.000002 dB
SET_ADEC_FAR_THRESHOLD 1 - -
GET_ADEC_PEAK_TO_AVERAGE_GOOD_AEC 1 4.000000dB | 4.000000 dB
SET_ADEC_PEAK_TO_AVERAGE_GOOD_AEC 1 - -
GET_ADEC_TIME_SINCE_RESET 1 -
GET_AEC_PEAK_TO_AVERAGE_RATIO 1 - -
GET_AEC_RESET_TIMEOUT 1 -1 -1
SET_AEC_RESET_TIMEOUT 1 - -
GET_AGM 1 - -
GET_DELAY_DIRECTION 1 0 0
GET_DELAY_ESTIMATE 1 - -
GET_DELAY_ESTIMATOR_ENABLED 1 0 0
SET_DELAY_ESTIMATOR_ENABLED 1 - -
GET_ERLE_BAD_BITS 1 -0.066 -0.066
SET_ERLE_BAD_BITS 1 - -
GET_ERLE_BAD_GAIN 1 0.0625 0.0625

continues on next page
68

V4

XVF3610 Voice Processor - User Guide

Table 7.2 — continued from previous page

Group Command Num- UA Default INT Default
ber of
Values

SET_ERLE_BAD_GAIN

—_
1

GET_ERLE_GOOD_BITS

SET_ERLE_GOOD_BITS

SET_MANUAL_ADEC_CYCLE_TRIGGER

GET_MAX_CONTROL_TIME_STAGE_A

GET_MAX_CONTROL_TIME_STAGE_B

GET_MAX_CONTROL_TIME_STAGE_C

GET_MAX_DSP_TIME_STAGE_A

GET_MAX_DSP_TIME_STAGE_B

GET_MAX_DSP_TIME_STAGE_C

GET_MAX_IDLE_TIME_STAGE_A

GET_MAX_IDLE_TIME_STAGE_B

GET_MAX_IDLE_TIME_STAGE_C

GET_MAX_RX_TIME_STAGE_A

GET_MAX_RX_TIME_STAGE_B

GET_MAX_RX_TIME_STAGE_C

GET_MAX_TX_TIME_STAGE_A

GET_MAX_TX_TIME_STAGE_B

GET_MAX_TX_TIME_STAGE_C

GET_MIC_SHIFT_SATURATE 00 00

SET_MIC_SHIFT_SATURATE

GET_MIN_CONTROL_TIME_STAGE_A

GET_MIN_CONTROL_TIME_STAGE_B

GET_MIN_CONTROL_TIME_STAGE_C

GET_MIN_DSP_TIME_STAGE_A

GET_MIN_DSP_TIME_STAGE_B

GET_MIN_DSP_TIME_STAGE_C

GET_MIN_IDLE_TIME_STAGE_A

GET_MIN_IDLE_TIME_STAGE_B

GET_MIN_IDLE_TIME_STAGE_C

GET_MIN_RX_TIME_STAGE_A

GET_MIN_RX_TIME_STAGE_B

GET_MIN_RX_TIME_STAGE_C

GET_MIN_TX_TIME_STAGE_A

GET_MIN_TX_TIME_STAGE_B

GET_MIN_TX_TIME_STAGE_C

GET_PEAK_PHASE_ENERGY_TREND_GAIN

SET_PEAK_PHASE_ENERGY_TREND_GAIN

GET_PHASE_POWER_INDEX

SET_PHASE_POWER_INDEX

GET_PHASE_POWERS

RESET_TIME_STAGE_A

RESET_TIME_STAGE_B

RESET_TIME_STAGE_C

FILTER | GET_FILTER_BYPASS

= 2 = = 2| g = 2| 2| 2| 2 2] = 2 = = = = = = = 2 2| 2 2NN = = = = | 2 | | | 2] 2 2 = = 2| 2
1

SET_FILTER_BYPASS

continues on next page

Table 7.2 — continued from previous page

XVF3610 Voice Processor - User Guide

Group Command Num- UA Default INT Default
ber of
Values
GET_FILTER_COEFF 10 -0.00000000 | -0.00000000
-0.00000000 | -0.00000000
0.00000000 | 0.00000000
0.00000000 | 0.00000000
0.00000000 | 0.00000000
-0.00000000 | -0.00000000
-0.00000000 | -0.00000000
0.00000000 | 0.00000000
0.00000000 | 0.00000000
0.00000000 | 0.00000000
SET_FILTER_COEFF 10 - -
GET_FILTER_COEFF_RAW 10 0000000|0000COQO0O
000 000
SET_FILTER_COEFF_RAW 10 - -
GET_FILTER_INDEX 1 0 0
SET_FILTER_INDEX 1 - -

GPIO SET_GPI_INT_CONFIG 3 -
GET_GPLINT_PENDING_PIN 1 -
GET_GPI_INT_PENDING_PORT 1 -
GET_MAX_UBM_CYCLES 1 - -
GET_MCLK_IN_TO_PDM_CLK_DIVIDER 1 2 2
SET_MCLK_IN_TO_PDM_CLK_DIVIDER 1 - -
GET_MIC_START_STATUS 1 2 2
SET_MIC_START_STATUS 1 - -
RESET_MAX_UBM_CYCLES 1 - -
GET_SYS_CLK_TO_MCLK_OUT_DIVIDER 1 12 12
SET_SYS_CLK_TO_MCLK_OUT_DIVIDER 1 . -

12C GET_I2C 56 0000000 | -

0000000
0000000
0000000
0000000
0000000
0000000
0000000
SET_I2C 56 - -
GET_I2C_READ_HEADER 3 000 -
SET_I2C_READ_HEADER 3 - -
GET_I2C_WITH_REG 56 0000000 | -
0000000
0000000
0000000
0000000
0000000
0000000
0000000
SET_I2C_WITH_REG 56 - -

12S GET_I2S_RATE 1 48000 48000
SET_I2S_RATE 1 - -
GET_I2S_START_STATUS 1 2 2
SET_I2S_START_STATUS 1 - -

IC GET_ADAPTATION_CONFIG_IC 1 0 0

continues on next page
70

Table 7.2 — continued from previous page

XVF3610 Voice Processor - User Guide

Group

Command

Num-
ber of
Values

UA Default

INT Default

SET_ADAPTATION_CONFIG_IC

—_

GET_CH1_BEAMFORM_ENABLE

SET_CH1_BEAMFORM_ENABLE

GET_COEFFICIENT_INDEX_IC

SET_COEFFICIENT_INDEX_IC

GET_FILTER_COEFFICIENTS_IC

GET_FORCED_MU_VALUE_IC

0.999

SET_FORCED_MU_VALUE_IC

GET_PHASES_IC

GET_PROC_FRAME_BINS_IC

RESET_FILTERLIC

GET_SIGMA_ALPHA_IC

11

SET_SIGMA_ALPHA_IC

GET_X_ENERGY_DELTAL_IC

SET_X_ENERGY_DELTALIC

0.000070 dB

GET_X_ENERGY_GAMMA_LOGZ_IC

SET_X_ENERGY_GAMMA_LOG2_IC

2

KWD

GET_KWD_BOOT_STATUS

GET_KWD_HID_EVENT_CNT

SET_KWD_HID_EVENT_CNT

GET_KWD_INTERRUPT_PIN

SET_KWD_INTERRUPT_PIN

JEELY UUNEY JUSRY JUSSEY RUNIEY SR JUUNEY [NNEY JNIEY JIIEY LY JNULY JINRY NSY JINSY JINSY JISSY JINLY QIS SIS g

SPI

GET_SPI

SET_SPI_PUSH

SET_SPI_PUSH_AND_EXEC

a1l g1l O
O O O

GET_SPI_READ_HEADER

N

00

SET_SPI_READ_HEADER

USB

GET_HID_IDLE_INDEFINITE_DURATION

SET_HID_IDLE_INDEFINITE_DURATION

GET_HID_MAP

02

SET_HID_MAP

GET_HID_MAP_ALTERNATION_ENABLED

SET_HID_MAP_ALTERNATION_ENABLED

GET_HID_MAP_HEADER

00

SET_HID_MAP_HEADER

GET_HID_MAP_SEQUENCER_ENABLED

SET_HID_MAP_SEQUENCER_ENABLED

GET_HID_USAGE

923

SET_HID_USAGE

GET_HID_USAGE_HEADER

007

SET_HID_USAGE_HEADER

GET_USB_BCD_DEVICE

SET_USB_BCD_DEVICE

GET_USB_START_STATUS

SET_USB_START_STATUS

= 2 2 2 W] W] NN =] = NN = = NN = =N

7.3 Boot status codes (RUN_STATUS)

The following table describes the Boot Status codes returned by the startup processes accessible though the
GET_RUN_STATUS control utility command.

71

XVF3610 Voice Processor - User Guide

Table 7.3: XVF3610 Boot Status Codes

Code Label Note

0 INIT Reserved initial value. Decline attempts to initiate
DFU.

1 DATA_PARTITION_NOT_FOUND Not used.

2 FACTORY_DATA_SUCCESS Normal operation.

3 UPGRADE_DATA_SUCCESS Normal operation.

4 FACTORY_DATA_IN_PROGRESS Image scanning in progress. Decline attempts to
initiate DFU.

5 UPGRADE_DATA_IN_PROGRESS Image scanning in progress. Decline attempts to
initiate DFU.

6 DFU_IN_PROGRESS Enough DFU commands received to establish a
connection to on-board flash memory. Not cleared
until reboot.

7 HW_BUILD_READ_SUCCESS Reserved intermediate value. Normally never re-
turned.

8 HW_BUILD_PARTITION_SIZE_ERROR Problem reading Data Partition header. Check fac-
tory programming.

9 HW_BUILD_PARTITION_BASE_ERROR Problem reading Data Partition header. Check fac-

tory programming.

10 HW_BUILD_READ_ERROR

Problem reading Data Partition header. Check fac-
tory programming.

11 HW_BUILD_CRC_ERROR

Problem reading Data Partition header. Check fac-
tory programming. May indicate that no Data Parti-
tion is present or a flash wear issue.

12 HW_BUILD_TAG_ERROR

Problem reading Data Partition header. Check fac-
tory programming.

13 FACTORY_VERSION_ERROR

No valid upgrade image found. A factory image did
not match running version. This can indicate fail-
safe mode.

14 UPGRADE_VERSION_ERROR

Valid upgrade boot and data images found but
data image version does not match running version.
Check correct version of deployed field upgrade.

15 FACTORY_ITEM_READ_ERROR

Problem reading configuration items from data im-
age. Unexpected error.

16 UPGRADE_ITEM_READ_ERROR

Problem reading configuration items from data im-
age. Unexpected error.

17 FACTORY_ITEM_INVALID_TYPE

Last item encountered is not of terminator type.
Should never happen with script generated data im-
ages. Check generation procedure.

18 UPGRADE_ITEM_INVALID_TYPE

Last item encountered is not of terminator type.
Should never happen with script generated data im-
ages. Check generation procedure.

19 DFU_FLASH_CONNECT_FAILED

Failed to establish on-board flash connection.
Check factory programming. Check flash specifica-
tion (see section below).

20 DFU_FLASH_SPEC_UNSUITABLE

Flash specification unsuitable for DFU. Check flash
specification (see section below).

7.4 Example .SPISPEC file format

SPISPEC file for 64Mbit Winbond W25Q64JV (used on XK-VOICE-L71 kit).

72

XVF3610 Voice Processor - User Guide

This file is required to run the xflash command to program the firmware into the flash memory device.

Comments are inserted with /* ..

0,
256,
32768,
3,

0,

0x20,

4096,

0x06,

0x04,
PROT_TYPE_SR
{{0x18,0x00}
0x02,

OxEB,

1’

>

,10,0}},

SECTOR_LAYOUT_REGULAR,

{4096,{0,{0}
0x05,
0x01,
0x01,

13,

/*
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/*
/%

*/.

W25Q64JV - Just specify O as flash_id */
page size */

num pages */

address size */

log2 clock divider */
QSPI_RDID */

id dummy bytes */

id size in bytes */
device id (leave zero) */
QSPI_SE */

Sector erase is always 4KB */
QSPI_WREN */

QSPI_WRDI */

Protection via SR */
QSPI_SP, QSPI_SU */
QSPI_PP */

QSPI_READ_FAST */

1 read dummy byte */

mad sectors */

regular sector sizes */
QSPI_RDSR */

QSPI_WRSR */
QSPI_WIP_BIT_MASK */

7.5 USB enumeration

The XVF3610 includes a Human Interface Device (HID) endpoint to enable the XVF3610 to signal interrupts
caused by GPIO events. The table below shows how the XVF3610 HID appears on Windows using USB view.

Table 7.4: USB HID Endpoint

Device Description Device Ven- Prod- USB USB USB Ser- USB Driver
Name Type dorID uctID Class Sub- Pro- vice Ver- De-
Class to- Name sion scrip-
col tion
XVF3610 USB Com- Un- 20b1 0x0016 0 0 0 usbc- 2 UsB
(UAC1.0) posite Device known cgp Com-
Adaptive posite
Device
XVF3610 USB Audio Audio 20b1 0x0016 1 1 0 us- 2 USB
(UAC1.0) Device bau- Audio
Adaptive dio Device
XVF3610 XMOS Con- Vendor 20b1 0x0016 ff ff ff 2
(UAC1.0) trol Specific
Adaptive
XVF3610 USB Input HID 20b1 0x0016 3 0 0 HidUsb 2 UsB
(UAC1.0) Device (Human Input
Adaptive Interface Device
Device)

During USB enumeration, the XVF3610 HID produces three descriptors. The listing below shows them as

73

https://www.nirsoft.net/utils/usb_devices_view.html

XVF3610 Voice Processor - User Guide

recorded on Windows using USB View. For details of the structure and meaning of these descriptors, see the
USB Specification v2.0 sections 9.6.5 and 9.6.6 and the Device Class Definition for Human Interface Devices
(HID) v1.11 section 6.2.1.

===>Interface Descriptor<===

bLength: 0x09

bDescriptorType: 0x04

bInterfaceNumber: 0x04

bAlternateSetting: 0x00

bNumEndpoints: 0x01

bInterfaceClass: 0x03 -> HID Interface Class
bInterfaceSubClass: 0x00

bInterfaceProtocol: 0x00

iInterface: 0x00

===>HID Descriptor<===

bLength: 0x09

bDescriptorType: 0x21

bcdHID: 0x0110

bCountryCode: 0x00

bNumDescriptors: 0x01

bDescriptorType: 0x22 (Report Descriptor)
wDescriptorLength: 0xOO6E

===>Endpoint Descriptor<===

bLength: 0x07

bDescriptorType: 0x05

bEndpointAddress: 0x82 -> Direction: IN - EndpointID: 2
bmAttributes: 0x03 -> Interrupt Transfer Type
wMaxPacketSize: 0x0040 = 0x40 bytes
bInterval: 0x08

Note: If the SET_HID_USAGE command has been used to change the meaning of a bit in the HID Report, the
wDescriptorLength field of the HID Descriptor may contain a different value.

7.6 General purpose filter example

7.6.1 Specification

This page illustrates the process of defining an audio filter block in the XVF3610.

The example below routes a USB audio signal through a filer block and sends the output back to the USB
host.

Steps to set up this configuration are:

1. Setthe stereo USB output to listen to the stereo USB input (loopback, skipping audio processing pipeline
completely)

2. Apply a stereo 500Hz high-pass and 4kHz low-pass cascaded biquad filter
3. The 500Hz high-pass filter coefficients are:

al=-1.90748889
a2 =0.91158173

b0 = 0.95476766
b1=-1.90953531
b2 = 0.95476766

74),

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/usbview
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/device-class-definition-hid-111
https://www.usb.org/document-library/device-class-definition-hid-111

XVF3610 Voice Processor - User Guide

4. The 4kHz low-pass filter coefficients are:

al=-1.27958194
a2 =0.47753396
b0 = 0.04948800
b1=0.09897601
b2 = 0.04948800

5. Enable the filter and hear the effect of the filter on a signal when the filters are enabled

7.6.2 Worked Example

This example assumes that the input and output sample rate is 48kHz.

First, connect the USB output to the USB input:

victrl_usb SET_IO_MAP O 7 # (USB output left outputs USB input left)
victrl_usb SET_IO_MAP 1 8 # (4s above for right channel)

Now configure the filter:

vfctrl_usb SET_FILTER_INDEX 2 (USB output left filter)
victrl_usb SET_FILTER_COEFF -1.90748889 0.91158173 0.95476766 -1.90953531 0.95476766 -1.
—27958194 0.47753396 0.04948800 0.09897601 0.04948800
vfctrl_usb SET_FILTER_INDEX 3 (USB output right filter)
vfctrl_usb SET_FILTER_COEFF -1.90748889 0.91158173 0.95476766 -1.90953531 0.95476766 -1.
27958194 0.47753396 0.04948800 0.09897601 0.04948800

Now enable the filter:

victrl_usb SET_FILTER_INDEX O
victrl_usb SET_FILTER_BYPASS 0
victrl_usb SET_FILTER_INDEX 1
victrl_usb SET_FILTER_BYPASS 0

Play a white noise source from the USB device and record the input. Use a spectrogram to show the band
limited signal due to the effect of the filters. The effect should also be audible.

7.7 Command transport protocol

7.7.1 Transport protocol for control parameters

Control parameters are converted to an array of bytes in network byte order (big endian) before they're sent
over the transport protocol. For example, to set a control parameter to integer value 305419896 which cor-
responds to hex 0x12345678, the array of bytes sent over the transport protocol would be {0x12, 0x34, 0x56,
0x78}. Similarly, a 4 byte payload {0x00, 0x01, 0x23, 0x22} read over the transport protocol is interpreted as
an integer value 0x00012322.

In addition to the control parameters values, commands include Resource ID, the Command ID and Payload
Length fields that must be communicated from the host to the device. The Resource ID is an 8-bit identifier
that identifies the resource within the device that the command is for. The Commmand ID is an 8-bit identifier
used to identify a command for a resource in the device. Payload length is the length of the data in bytes that
the host wants to write to the device or read from the device.

The payload length is interpreted differently for GET_and SET_commands. For SET_commands, the payload
length is simply the number of bytes worth of control parameters to write to the device. For example, the
payload length for a SET_ command to set a control parameter of type int32 to a certain value, would be set

75 y,

XVF3610 Voice Processor - User Guide

to 4. For GET_ commands the payload length is T more than the number of bytes of control parameters to
read from the device. For example, a GET_ command to read a parameter of type int32, payload length would
be setto 5. The one extra byte is used for status and is the first byte (payload[0]) of the payload received from
the device. In the example above, payload[0] would be the status byte and payload[1]..payload[4] would be the
4 bytes that make up the value of the control parameter.

The table below lists the different values of the status byte and the action the user is expected to take for
each status:

Table 7.5: Values for returned status byte

Return code Values Description

ctrl_done 0 Read command successful. The payload bytes contain valid payload re-
turned from the device.

ctrl_wait 1 Read command not serviced. Retry until ctrl_done status returned.

ctrl_invalid 3 Error in read command. Abort and debug.

The GET_commands need the extra status byte since the device might not return the control parameter value
immediately due to timing constraints. If that is the case the status byte would indicate the status as ctrl_wait
and the user would need to retry the command. When returned a ctrl_wait, the user is expected to retry the
GET_ command until the status is returned as ctrl_done. The first GET_command is placed in a queue and
it will be serviced by the end of each 15ms audio frame. Once the status byte indicates ctrl_done, the rest of
the bytes in the payload indicate the control parameter value.

7.7.2 Transporting control parameters over I°C

This section describes the I°C command sequence when issuing read and write commands to the device.

The first byte sent over I°C after start contains the device address and information about whether thisis an 1°C
read transaction or a write transaction. This byte is 0x58 for a write command or 0x59 for a read command.
These values are derived by left shifting the device address (0x2c) by 1Tand doing a logical OR of the resulting
value with O for an 12C write and 1 for an 12C read.

The bytes sequence sent between 12C start and stop for SET_ commands is shown in the figure below:

start 0x58 ResourcelD CommandiD Fayload Payload[0] . Payload[N-1] slop
length (M)

Fig. 7.1: Bytes sequence for I°C SET_ commands

For GET_ commands, the I°C commands sequence consists of a write command followed by a read com-
mand with a repeated start between the 2 commands. The write command writes the resource ID, command
ID and the expected data length to the device and the read command reads the status byte followed by the rest
of the payload that makes up the control parameter value. The figure below shows the I°C bytes sequence
sent and received for a GET_ command.

start Ox58 RasourcelD | Command|D Payload Start 0x59 Payload[0]

aylos [aylos
length (N+1) = status payload(1) Paylead(N] G

Fig. 7.2: Bytes sequence for I17C GET_ commands

76

XVF3610 Voice Processor - User Guide

7.7.3 Transporting control parameters over USB

Use the vendor_id 0x20b1, product_id 0x0016 and interface number 3 to initialize for USB. The API function
libusb_control_transfer() is used for transporting over USB. When calling libusb_control_transfer(), windex
corresponds to the Resource ID, wValue is the Command ID and wLength is the payload length.

7.7.4 Floating point to fixed point (Q format) conversion

Numbers with fractional parts can be represented as floating-point or fixed-point numbers. Floating point
formats are widely used but carry performance overheads. Fixed point formats can improve system efficiency
and are used extensively within the XVF3610. Fixed point numbers have the position of the decimal point fixed
and this is indicated as a part of the format description.

In this document, Q format is used to describe fixed point number formats, with the representation given as
Qm.n format where m is the number of bits reserved for the sign and integer part of the number and n is the
number of bits reserved for the fractional part of the number. The position of the decimal point is a trade-off
between the range of values supported and the resolution provided by the fractional bits.

The dynamic range of Qm.n format is -2™" and 2™1-2" with a resolution of 2"
To convert a floating-point format number to Qm.n format fixed-point number:

+ Multiply the floating-point number by 2™

+ Round the result to the nearest integer

+ The resulting integer number is the Qm.n fixed-point representation of the initial floating-point number
To convert a Qm.n fixed-point number to floating-point:

+ Divide the fixed-point number by 2™

+ The resulting decimal number is a floating-point representation of the fixed-point number.

Converting a number into fixed point format and then back to a floating point number may introduce an error
of up to £2°*D

Example:

To represent a floating-point number 14.765467 in Q8.24 format, the equivalent fixed-point number would be
14.765467 x 224 = 247723429.2 which rounds to 247723429.

To get back the floating-point number given the Q8.24 number 247723429, calculate 247723429 / 22* and
get back the floating-point number as 14.76546699. The difference of 0.000000071 is correct to with the error
bounds of +22° which is 40.00000003

7.8 Flash programming and update flow

The flows to program the flash and to update the device are shown in the diagram below:

77 y,

XVF3610 Voice Processor - User Guide

I N ~
. Upgrade image Application
[Data Partition Generator |ﬂ dato parttion b ctate L xe)
_ J . S

«flash to generate - Upgrade image
upgrade image .bin with no DFU suffix

I
l |
I
(I
I
I
I
I
l |
——,
I (
Application ‘- | dfu_ush or — inl::ga\:i:h _ DFU Suffix
. i i Gel
executable |.xe} factory image , diu_iZc | DU sulfix nerator
| l

I
I
I
I
I
I
I

~

Factory image
data partition _bin

o "

Factory image that can be
programmed via xflash or

DFU update -
complete! File that is uged as input
® Gresn o utputted from a tool

'd Y
Step that uses an XMOS.
tool

pre-programmed into QSPI
. _/

Fig. 7.3: Flash programming and update flow

The first steps for both flows consists of generating the Data Partition as described in the Configuration and
the Data Partition section. When programming the factory image, the Data Partition and the boot image must
be used as reported in the Programming the Factory Boot image and Data Partition section. In case of a
firmware update, the list of tools and steps required can be found in the Upgrade Images and Data Partitions
section.

7.9 Capturing packed samples

To assist with system integration, the XVF3610 provides the ability to pack multiple 16kHz channels into a
48kHz output. The following section describes the usage of packed signals.

Note: All packed functions provide a snapshot of a 16kHz signals over a 48kHz output. If the output stream
is not 48kHz, it will not work because the 3x bandwidth is needed for packing the 16kHz signals. They all also
require that no volume scaling be applied on the host otherwise it will break the marker sequence resulting in
the captured audio being unable to be unpacked.

There are two packing mechanisms, however for typical usage where a full capture of the pipeline is needed,
PACKED_ALL is recommended.

7.9.1 Capturing all pipeline input and output signals over a 48kHz USB interface

The goal here is to capture the pipeline input and output to provide visibility on what signals are actually
entering the pipeline and what processed output was generated. This can be useful when checking the mi-
crophone and reference signals are correctly routed, as well as checking signal delay issues causing poor
AEC performance.

This procedure is described in the figure below:

78 X

XVF3610 Voice Processor - User Guide

mic_input = mic
ref_input = usb
output = packed all

C XVF361x (48kHz)
[O—>

& channel output

& .
125 or USB i) mic_1
h 4 = mic_0
=
Host _;Em ref |

|

playback (eg. aplay)
recording (eq. arecord)

o (T (O
AR rof | unpacker_
= re 1_r reference packed_ packed_all.py
s :—'““m = wav out.wav

e

6ch
output.wa

Fig. 7.4: System overview to capture of DSP pipeline signals over a 48kHz USB interface

79

XVF3610 Voice Processor - User Guide

First, set the USB output interface resolution to 24b. This is important because microphone signals in a quiet
room (35dBA) may be quantised away in a 16b audio capture. Also, 24b audio has been found to work on
most hosts.

Second, configure the audio crossbar to output PACKED_ALL on USB output channels 0 and 1. More informa-
tion about the output channels can be found in the Signal Routing and Scaling section.

This can be done by setting the parameters in the Data Partition, as described in the Configuration and the
Data Partition section.

To configure the packed output for USB, add in the file input/set_packed_all_usb_output.txt the follow-
ing contents:

SET_IO_MAP 0 16
SET_IO_MAP 1 16

Note: The IO map source 16 is set for both USB output channels. Source 16 automatically resolves the
channel indices so this will result in a stereo output containing a packed capture of all six discrete channels
of interest.

Next, add the following sections to the .json configuration file item section and save it:

{

"path": "input/set_packed_all_usb_output.txt",
"comment": ""

1,

{

"path": "input/device_to_usb_bit_res_24.txt",
"comment": ""

}:

Now generate the Data Partition from the updated .json configuration file and flash the device with the newly
generated Data Partition as described in the Configuration and the Data Partition section.

Once the firmware has booted following the flashing operation, it can be verified in the sound control panel
that the USB input stream from the XVF3610-UA to the host is now set to 24b.

Next the audio of interest is captured. Do this with a Wav capture utility to capture the stereo output from the
USB input from the XVF3610 device at 48kHz. Ensure the file is saved as 32b Signed Integer which is needed
for the next step.

An example command line for Linux (with ALSA tools installed and XVF3610 as device 1) is shown below:

arecord -c 2 -f S24_LE -r 48000 packed_capture.wav -D plughw:1

Note: Viewing/listening to the packed Wav is non-sensical because it contains packed/multiplexed signals
and will sound noisy.

Finally convert these packed files into unpacked, 16kHz, six-channel audio files:

python3 host/unpacker_packed_all.py packed_capture.wav unpacked_6ch_16kHz.wav 24

The output file unpacked_6ch_16kHz.wav may now be inspected. The channel assignment is as follows:
1. Microphone Ch 0
2. Microphone Ch 1

3. Reference input Left

80 p,

XVF3610 Voice Processor - User Guide

4. Reference input Right
5. Pipeline Output Ch 0 (nominally ASR)
6. Pipeline Output Ch 1 (nominally Comms)

Below is a visualisation of a six-channel audio capture. Note the relatively quiet microphone signals compared
with the reference. This is typical and allows for loud near-end signals without distortion.

ore st & ovFdn et [2 imeees Bl sapomeen. B

-

@
el T

et

Fig. 7.5: Example of six-channel audio capture

7.9.2 Capturing all pipeline input and output signals over a 48kHz I?S interface
The same procedure described for the USB interface can be adapted for the I2S interface. The only differences
are that:

« I°S interface is always 32 bits

« 1°S has different output channels than USB

To configure the packed output for I°S, add in the file input/set_packed_all_i2s_output.txt the following
contents:

SET_IO_MAP 2 16
SET_IO_MAP 3 16

Note: The |0 map source 16 is set for both I2S output channels. Source 16 automatically resolves the channel
indices so this will result in a stereo output containing a packed capture of all six discrete channels of interest.

Next, add the following sections to .json configuration file item section and save it:

{
"path": "input/set_packed_all_i2s_output.txt",
"COIIlmeIlt" H m"nn

1,

81 X

XVF3610 Voice Processor - User Guide

Now generate the Data Partition from the updated .json file and flash it on the device using the same instruc-
tions as described in the Configuration and the Data Partition section.

Next the audio of interest is captured. Do this with a Wav capture utility to capture the stereo output from the
1°S input from the XVF3610 device at 48kHz. Ensure the file is saved as 32b Signed Integer which is needed
for the next step.

An example command line for Linux (with ALSA tools installed and XVF3610 as device 0) is shown below:

arecord -c 2 -f S24_LE -r 48000 packed_capture.wav -D plughw:0

Note: Viewing/listening to the packed Wav is non-sensical because it contains packed/multiplexed signals
and will sound noisy.

Finally convert these packed files into unpacked, 16kHz, six-channel audio files:

python3 host/unpacker_packed_all.py packed_capture.wav unpacked_6ch_16kHz.wav 32

The output file unpacked_6¢ch_16kHz.wav may now be inspected. The channel assignment is as follows:
1. Microphone Ch 0
2. Microphone Ch 1
3. Reference input Left
4. Reference input Right
5. Pipeline Output Ch 0 (nominally ASR)
6. Pipeline Output Ch 1 (nominally Comms)

7.9.3 Packing specific signals

PACKED_PIPELINE_OUTPUT, PACKED_MIC, PACKED_REF all use the same underlying packing function. They pack
2 channels (pipeline outpout 0/1 or microphone0/1 or reference left/right) into a single audio channel. They re-
quire that the output interface, including host processing, be capable of bit-perfect 32b audio. The underlying
function packs the two 16kHz samples into three 48kHz samples as follows:

+ Top 24b of sample[0] with 8b LSB marker ‘0x00’
+ Top 24b of sample[1] with 8b LSB marker ‘0x07
* The bottom 8b of sample[0], the bottom 8b of sample[1], 0x00, 8b LSB marker ‘0x02’

The unpacker.py script then looks for 0x00, 0x01, 0x02 in the LSByte to check for a packed sequence. So
inspecting the Wav in a hex editor should make it clear when it is captured properly.

It will capture bit-perfect data.

Warning: Packing specific signals will not work on MacOS because it only supports 24b audio due to
core audio representing audio using single-precision floating-point. It has been tested and works well on
Linux (x86/RPI) which supports bit-perfect 32b audio.

7.10 Direct access to DSP Pipeline

The XVF3610 supports a mode where the DSP pipeline can be fed directly from a four-channel test vector
which may either be pre-generated or even pre-captured by recording from an XVF3610 device. This can

82 p,

XVF3610 Voice Processor - User Guide

be helpful when re-creating a previous scenario or when tuning the system via the control interface in the
presence of a fixed and repeatable test vector.

The vector injection mode works by packing four-channel 16kHz input data (dual microphones and stereo
reference) into a 48kHz stereo input signal. The device then unpacks the 48kHz Wav into 16kHz multi-channel
input and feeds it to the front end of the pipeline.

7.10.1 Injecting a four-channel, 16kHz test vector into the DSP pipeline over USB

The goal here is to provide a four-channel test vector directly into the DSP pipeline instead of using the mi-
crophones and a separate reference signal. The packed input feature is supported by both 12S (INT) and USB
(UA and UA-HYBRID) connected XVF3610 variants.

First the procedure for the UA variant is described.

This procedure is represented in the figure below:

KVE361x (48kHz)

mic_input = packed_all
ref_input = packed_all
output = pipeline out

A
i 125 or USB
2 or 4 channel input v
o m?c_ 1 Host
= mic_0
ref_| playback (eg. aplay)

recording (eq. arecord)

e e e idaihaliie
. ey 1ol

packer_
4ch packed_all.py
Input.way

Fig. 7.6: System overview to inject a four-channel, 16kHz test vector into the DSP pipeline

1 or 2 channel output
St dbd ASR
o = - = = Comms

packed_
in.wav

pipeling_
out.wav

83 p,

XVF3610 Voice Processor - User Guide

First, the resolution must be set to 24b (default is 16b). No need exists to adjust the sample rate as this is
set to 48kHz by default. The resolution is important because microphone signals in a quiet room (35dBA)
may be quantised away in a 16b audio sample. Also, the packing process uses the least significant bit of the
audio to carry the frame markers and hence 1 bit of audio resolution is lost. Using 24b audio has been found
to work on most popular hosts and OSs.

Second, the audio crossbar switch must be configured to input PACKED_ALL_INPUT_USB on input channels
MIC_TO_PIPELINE_O, MIC_TO_PIPELINE_1, REF_TO_PIPELINE_O and REF_TO_PIPELINE_1. More information
about the input channels can be found in the Signal Routing and Scaling section.

Both of these settings will be set by configuring parameters in a custom Data Partition. The audio crossbar
can be configured at runtime whereas USB parameters can only be set in the Data Partition.

To configure the packed output for USB add in the file input/set_packed_all_usb_input.txt the following
contents:

SET_IO_MAP 4 17
SET_IO_MAP 5 17
SET_IO_MAP 6 17
SET_IO_MAP 7 17

Note: The IO map source 17 is set for both microphone and reference channels. Source 17 automatically
resolves the channel indices.

Next, add the following sections to the json configuration file item section and save it:

"item_files": [

{
"path": "input/set_packed_all_usb_input.txt",
"comment": ""

}:

{
"path": "input/usb_to_device_bit_res_24.txt",
"comment": ""

}

Now generate the Data Partition from the updated .json configuration file and flash the device with the newly
generated Data Partition as described in the Configuration and the Data Partition section.

Once the firmware has booted following the flashing operation you may verify in the sound control panel that
the USB stream from host to the XVF3610 is now set to 24b.

Next the four-channel audio test file to be injected must be converted into a packed, 48kHz, stereo audio file:

python3 ../python/packer_packed_all.py my_4ch_test_vector.wav packed_input.wav 24

Note: Viewing/listening to the packed Wav is non-sensical because it contains packed/multiplexed signals
and will sound noisy. If you provide a 2-channel 16KHz input vector, the two channels are treated as micro-
phone inputs and the reference channels are set to zero.

The output file packed_input . wav can now be fed into the XVF3610. Do this with your favourite Wav playback
utility to inject the test file across the USB input to the XVF3610 device at 48kHz.

An example command to play the audio on a Linux host (with ALSA tools installed, assuming XVF3610 is
device 1) is:

aplay -c 2 -f S24_LE -r 48000 packed_input.wav-D plughw:1

84).

XVF3610 Voice Processor - User Guide

Note: Ensure the XVF3610 input audio device setting is set to 100% which will allow samples to be passed
through without scaling or breaking the marker sequence. Do this in your OS Audio control panel; it is not a
control supported by the vfctrl mechanism. If the device receives an invalid marker sequence it mutes the
inputs.

7.10.2 Injecting a four-channel, 16kHz test vector into the DSP pipeline over I1°S

The same procedure described for the USB interface can be adapted for the 12S interface used by INT and
UA-HYBRID variants. The only differences are that:

« I°S interface is always 32 bits
« 12S has different input channels than USB

The audio crossbar switch must be configured to input PACKED_ALL_INPUT_I2S on input channels
MIC_TO_PIPELINE_O, MIC_TO_PIPELINE_1, REF_TO_PIPELINE_O and REF_TO_PIPELINE_1. More information
about the input channels can be found in the signal routing section.

To configure the packed output for 1°S, add in the file input/set_packed_all_i2s_input.txt the following
contents:

SET_IO_MAP 4 18
SET_IO_MAP 5 18
SET_IO_MAP 6 18
SET_IO_MAP 7 18

Note: The IO map source 18 is set for both microphone and reference channels. Source 18 automatically
resolves the channel indices.

Next, add the following sections to the .json configuration file item section and save it:

"item_files": [
{
"path": "input/set_packed_all_i2s_input.txt",
"Comment" . mnun

]

Now generate the Data Partition from the updated .json configuration file and flash the device with the newly
generated Data Partition as described in the Configuration and the Data Partition section.

Next the four-channel audio test file to be injected must be converted into a packed, 48kHz, stereo audio file:

python3 ../python/packer_packed_all.py my_4ch_test_vector.wav packed_input.wav 32

Note: Viewing/listening to the packed Wav is non-sensical because it contains packed/multiplexed signals
and will sound noisy. If you provide a 2-channel 16KHz input vector, the two channels are treated as micro-
phone inputs and the reference channels are set to zero.

The output file packed_input . wav can now be fed into the XVF3610. Do this with your favourite Wav playback
utility to inject the test file across the I°S input to the XVF3610 device at 48kHz.

An example command to play the audio on a Linux host (with ALSA tools installed, assuming XVF3610 is
device 0) is:

85 y,

XVF3610 Voice Processor - User Guide

aplay -c 2 -f S24_LE -r 48000 packed_input.wav-D plughw:0

Note: Ensure the XVF3610 input audio device setting is set to 100% which will allow samples to be passed
through without scaling or breaking the marker sequence. Do this in your OS Audio control panel; it is not a
control supported by the vfctrl mechanism. If the device receives an invalid marker sequence it mutes the
inputs.

86 p,

87

XVF3610 Voice Processor - User Guide

7.10.3 Injecting a four-channel packed input and capturing a six-channel packed out-

put

The full packed-input, packed-output system combines the behaviours of capturing and injecting the packed
audio samples on the XVF3610 device.

A system overview of this procedure for XVF3610-UA is below:

XVF361x (48kHz)
mic_input = packed_all
ref_input = packed_all
output = packed all & channel cutput
o _—
125 or USE - mic_1
2 or 4 channal input r =1 mic_0
B rie_1 Host T maemaal rel |
[T'— ref_r
e ref | playback (eg. aplay) e teré ASR
T i——— rof 1 recording (eg. arecord) Tt =+ = Comms
packer_ unpacker_
packed_allpy packed _all.py Gch
output.wav)

Fig. 7.7: System overview to inject a four-channel packed input and capture a six-channel packed output

XVF3610 Voice Processor - User Guide

To enable four-channel input and six-channel output simultaneously, create a json configuration file using
the item_files sections used in the previous chapters, the sections must be included in the same .json
configuration file.

The configurations described below are recommended for Hardware-In-Loop implementations because the
integrity of the packing and unpacking process can easily be checked visually by inspecting the six-channel
output capture.

Steps for XVF3610-UA
Following the instructions in the Configuration and the Data Partition section, generate and flash a Data Par-
tition including the commands to capture the packed audio over USB and inject the packed audio over USB.

Start capturing the packed output audio file. Do this with your favourite Wav capture utility to capture the
stereo output from the USB input from the XVF3610 device at 48kHz. Ensure you save the file as 32b Signed
Integer which is needed for the next step.

An example command line for Linux (with ALSA tools installed and XVF3610 as device 1) is shown below:

arecord -c 2 -f S24_LE -r 48000 packed_capture.wav -D plughw:1

Next the four-channel audio test file to be injected must be converted into a packed, 48kHz, stereo audio file:

python3 ../python/packer_packed_all.py my_4ch_test_vector.wav packed_input.wav 24

The output file packed_input . wav can now be fed into the XVF3610. Do this with your favourite Wav playback
utility to inject the test file across the USB input to the XVF3610 device at 48kHz.

An example command to play the audio on a Linux host (with ALSA tools installed, assuming XVF3610 is
device 1) is:

aplay -c 2 -f S24_LE -r 48000 packed_input.wav-D plughw:1

When the audio file is played into the device, the recording can be stopped and you can now convert the
packed file into an unpacked, 16kHz, six-channel audio file:

python3 host/unpacker_packed_all.py packed_capture.wav unpacked_6ch_16kHz.wav 24

Steps for XVF3610-UA-HYBRID
Following the instructions in the Configuration and the Data Partition section, generate and flash a Data Par-
tition including the commands to capture the packed audio over USB and inject the packed audio over I2S.

Start capturing the packed output audio file. Do this with your favourite Wav capture utility to capture the
stereo output from the USB input from the XVF3610 device at 48kHz. Ensure you save the file as 32b Signed
Integer which is needed for the next step.

An example command line for Linux (with ALSA tools installed and XVF3610 as device 1) is shown below:

arecord -c 2 -f S24_LE -r 48000 packed_capture.wav -D plughw:1

Next the four-channel audio test file to be injected must be converted into a packed, 48kHz, stereo audio file:

python3 ../python/packer_packed_all.py my_4ch_test_vector.wav packed_input.wav 32

The output file packed_input . wav can now be fed into the XVF3610. Do this with your favourite Wav playback
utility to inject the test file across the 1°S input to the XVF3610 device at 48kHz.

An example command to play the audio on a Linux host (with ALSA tools installed, assuming XVF3610 is
device 0) is:

88 p,

XVF3610 Voice Processor - User Guide

aplay -c 2 -f S24_LE -r 48000 packed_input.wav-D plughw:0

When the audio file is played into the device, the recording can be stopped and you can now convert the
packed file into an unpacked, 16kHz, six-channel audio file:

python3 host/unpacker_packed_all.py packed_capture.wav unpacked_6ch_16kHz.wav 24

Steps for XVF3610-INT

Following the instructions in the Configuration and the Data Partition section, generate and flash a Data Par-
tition including the commands to capture the packed audio over 1S and inject the packed audio over 1?S.

Start capturing the packed output audio file. Do this with your favourite Wav capture utility to capture the
stereo output from the USB input from the XVF3610 device at 48kHz. Ensure you save the file as 32b Signed
Integer which is needed for the next step.

An example command line for Linux (with ALSA tools installed and XVF3610 as device 1) is shown below:

arecord -c 2 -f S24_LE -r 48000 packed_capture.wav -D plughw:1

Next the four-channel audio test file to be injected must be converted into a packed, 48kHz, stereo audio file:

python3 ../python/packer_packed_all.py my_4ch_test_vector.wav packed_input.wav 32

The output file packed_input . wav can now be fed into the XVF3610. Do this with your favourite Wav playback
utility to inject the test file across the I°S input to the XVF3610 device at 48kHz.

An example command to play the audio on a Linux host (with ALSA tools installed, assuming XVF3610 is
device 1) is:

aplay -c 2 -f S24_LE -r 48000 packed_input.wav-D plughw:1

When the audio file is played into the device, the recording can be stopped and you can now convert the
packed file into an unpacked, 16kHz, six-channel audio file:

python3 host/unpacker_packed_all.py packed_capture.wav unpacked_6ch_16kHz.wav 32

89 p,

XVF3610 Voice Processor - User Guide

AMOS

Copyright © 2023, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS" with no warranty of any kind, express or implied and shall have no liability in
relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMQOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United King-
dom and other countries and may not be used without written permission. Company and product names
mentioned in this document are the trademarks or registered trademarks of their respective owners.

90 p,

	Introduction
	Overview
	Audio processing
	System Interfaces
	Booting and Initial configuration
	Default operation

	Audio Processing Pipeline
	Signal flow and processing
	Signal Routing and Scaling
	Routing commands
	Destinations
	Sources
	Example Routing Commands
	PACKED_ALL signals

	General Purpose Filter
	PDM microphone interface
	Automatic Echo Cancellation (AEC)
	Automatic Delay Estimation Control (ADEC)
	Interference canceller
	Noise Suppressor (NS)
	Automatic Gain Control (AGC) and Loss Control
	Alternative Architecture mode (ALT_ARCH)

	System Interfaces
	General Purpose Input and Output and Peripheral Bridging
	GPIO
	General Purpose Inputs
	General Purpose Outputs
	I2C Master peripheral interface (XVF3610-UA Only)
	I2C Slave Control interface (XVF3610-INT only)
	Using I2C Master to write to a device
	Using the I2C Master to read from a device
	SPI Master

	System Boot and Initial Configuration
	Boot process
	Flash storage structure
	Programming the Factory Boot image and Data Partition
	Upgrade Images and Data Partitions
	Generation of Binary Upgrade Image
	Addition of DFU Suffix to Binary files
	Performing Firmware Updates
	Factory restore
	Boot Image and Data Partition Compatibility checks
	Custom flash memory devices
	Custom flash definition for factory programming
	Custom flash definition for Data Partition generation

	SPI Slave Boot
	SPI Boot of XVF3610-INT
	SPI Boot of XVF3610-UA
	Implementing a SPI Boot host application

	Configuration and the Data Partition
	Data Partition file structure
	Item files
	Generating a Data Partition for custom applications

	Device operation
	Host Utilities
	Building the host utilities from source code

	Command-line interface (vfctrl)
	vfctrl Installation
	vfctrl syntax
	Configuration via Control interface
	Control operation
	Host Application
	Device Application

	Configuration via Data Partition

	USB Interface - (XVF3610-UA and XVF3610-UA-HYBRID only)
	USB Interface
	USB Configuration
	USB HID interface
	HID Report configuration
	USB HID report format
	HID report generation
	Configure GPI pins
	HID map alternation
	Example of modifying default mapping between pin and HID report
	HID sequencer
	Indefinite duration of HID set idle
	Implementation of a slide switch

	Serial Number
	USB device enumeration

	Reference information
	Base vfctrl command list
	Advanced vfctrl command list
	Boot status codes (RUN_STATUS)
	Example .SPISPEC file format
	USB enumeration
	General purpose filter example
	Specification
	Worked Example

	Command transport protocol
	Transport protocol for control parameters
	Transporting control parameters over I2C
	Transporting control parameters over USB
	Floating point to fixed point (Q format) conversion

	Flash programming and update flow
	Capturing packed samples
	Capturing all pipeline input and output signals over a 48kHz USB interface
	Capturing all pipeline input and output signals over a 48kHz I2S interface
	Packing specific signals

	Direct access to DSP Pipeline
	Injecting a four-channel, 16kHz test vector into the DSP pipeline over USB
	Injecting a four-channel, 16kHz test vector into the DSP pipeline over I2S
	Injecting a four-channel packed input and capturing a six-channel packed output
	Steps for XVF3610-UA
	Steps for XVF3610-UA-HYBRID
	Steps for XVF3610-INT

