

VocalFusion® XVF3510 VOICE PROCESSOR

USER GUIDE

V4.2

 2

CONTENTS
1. XVF3510 User Guide .. 5

1.1. Scope of document .. 5
1.2. XVF3510 Far-field Voice processors .. 5
1.3. System Block Diagrams ... 6

1.3.1. XVF3510-INT Configuration .. 6
1.3.2. XVF3510-UA Configuration ... 6

1.4. Device firmware and configuration .. 7
2. XVF3510 Voice Processor Architecture .. 8

2.1. Overview .. 8
2.2. Audio Processing Pipeline ... 8
2.3. ASR and Communication Processing .. 9
2.4. XVF3510-INT - For integrated voice interface applications ... 9
2.5. XVF3510-UA - For USB accessory voice interface applications 10

3. Principles of configuration, control and usage ... 11
3.1. Firmware release package ... 11

3.1.1. “bin” Directory ... 12
3.1.2. “data-partition” Directory .. 12
3.1.3. “host” Directory ... 12

3.2. Required Tools ... 13
3.2.1. xTIMEcomposer .. 13
3.2.2. Python 3 .. 13
3.2.3. Host build tools ... 13

3.3. Command-line interface (vfctrl) .. 14
3.4. Configuration via Control interface ... 15

3.4.1. Control operation .. 15
3.4.2. Host Application ... 15
3.4.3. Device Application .. 16

3.5. Configuration via Data Partition .. 16
3.6. XVF3510 Development kits .. 16
3.7. Updating the firmware .. 17
3.8. Operation ... 19

3.8.1. XVF3510-INT Amazon AVS demonstration ... 19
3.8.2. XVF3510-UA USB connected demonstration ... 19
3.8.3. Host Utilities .. 21
3.8.4. Building the host utilities from source code .. 21
3.8.5. Default operation .. 22

 3

4. XVF3510 Features and Configuration ... 23
4.1. Booting ... 23

4.1.1. Flash storage structure ... 23
4.1.2. Programming the Factory Boot image and Data Partition 24
4.1.3. Upgrade Images and Data Partitions ... 24
4.1.4. Factory restore .. 26
4.1.5. Boot Image and Data Partition Compatibility checks 26
4.1.6. Custom flash memory devices .. 26
4.1.7. SPI Slave Boot .. 27

4.2. Configuration and the Data Partition .. 28
4.2.1. Data Partition definition ... 28
4.2.2. Generating a Data Partition for custom applications 29
4.2.3. Serial Number ... 30

4.3. Interfaces, Audio Routing and Filtering .. 30
4.3.1. USB Interface .. 30
4.3.2. I2C Slave Control interface (XVF3510-INT only) ... 32
4.3.3. General Purpose Input and Output and Peripheral Bridging 33
4.3.4. GPIO ... 34
4.3.5. I2C Master peripheral interface (XVF3510-UA Only) 37
4.3.6. SPI Master ... 40
4.3.7. Signal flow and processing ... 42

4.4. Far-Field Voice Processing .. 47
4.4.1. PDM microphone interface ... 47
4.4.2. Automatic Echo Cancellation (AEC) ... 48
4.4.3. Automatic Delay Estimation & Correction (ADEC) 50
4.4.4. Interference canceller ... 53
4.4.5. Noise Suppressor (NS) ... 54
4.4.6. Automatic Gain Control (AGC) and Loss Control 55
4.4.7. Alternative Architecture mode (ALT_ARCH) ... 56

5. Additional Information ... 59
5.1. Documentation ... 59
5.2. Device firmware and drivers .. 59

6. Revision History .. 59

 4

Appendices ... 60
Appendix A: Parameter summary ... 61
Appendix B: Boot status codes (RUN_STATUS) ... 69
Appendix C: Example .SPISPEC file format .. 70
Appendix D: SPI Boot custom connection .. 71
Appendix E: USB enumeration .. 72
Appendix F: USB HID - Example using the development kit .. 73
Appendix G: General purpose filter example .. 74
Appendix H: Command transport protocol ... 75
Appendix I: Flash programming and update flow ... 77
Appendix J: Capturing packed samples for system integration ... 78

 5

1. XVF3510 USER GUIDE

1.1. SCOPE OF DOCUMENT

The XMOS VocalFusion® XVF3510 User Guide is written for system architects and engineers designing
Far-field voice systems using the XVF3510 voice processor. The document describes typical usage
models, the processor architecture, key feature operation, and interface definitions. In conjunction with
the product datasheet, these two documents provide all the information required for system design,
from concept to production testing and verification.
It is expected that this document is read in conjunction with the relevant datasheet and that the user
is familiar with basic voice processing terminology.

NOTE: This issue of the user guide covers the functionality supported by version 4.2 of the VocalFusion
XVF3510 application firmware.

1.2. XVF3510 FAR-FIELD VOICE PROCESSORS

The XMOS XVF3510 range of voice processors uses microphone array processing to capture clear,
high-quality voice from anywhere in the room. XVF3510 processors use highly optimised digital signal
processing algorithms implementing ‘barge-in', point noise and ambient noise reduction to increase
the Signal-to-Noise Ratio (SNR) achieving a reliable voice interface whatever the environment.
The XVF3510 processor is designed for seamless integration into consumer electronic products
requiring voice interfaces for Automatic Speech Recognition (ASR), communications or conferencing.
In addition to its class-leading voice processing, the XVF3510 voice processor provides a
comprehensive set of interfaces and configuration options to simplify the integration of a voice
interface into a wide range of system architectures. This includes specific features required in TV and
set-top box applications, including audio switching and digital inputs and outputs that support
switches and LED indicators.
The XVF3510 voice processor executes a firmware image that is either read from a flash memory
device or loaded by a host processor. The Device Firmware Upgrade (DFU) function of the processor
allows in field upgrade ensuring all products can benefit from the latest releases. While the voice
processor is running, this configuration can be modified by the host system over the XVF3510 control
interface. The control interface also allows the host system to control peripheral devices and obtain
status information from the device and its digital inputs.
Two variants of the XVF3510 are available which have been optimised for different application use
cases. These two variants require different firmware to be loaded onto the device.

Table 1-1 XVF3510 variants

PRODUCT KEY FEATURES TARGET APPLICATION

XVF3510-INT
Far-field voice interface
Audio interface: I2S (Slave)
Control interface: I2C (Slave)
Device Firmware Upgrade: I2C (Slave)

Voice interface integrated into the product

XVF3510-UA

Far-field voice interface
Audio interfaces: USB UAC1.0 (and optionally
I2S Master)
Control interface: USB2.0 Full Speed
Device Firmware Upgrade: USB

USB plug-in voice accessory, and integrated
products using USB

These application use cases are described in more detail in the following sections.

 6

1.3. SYSTEM BLOCK DIAGRAMS

1.3.1. XVF3510-INT CONFIGURATION

The XVF3510-INT device has been optimized for integration on a system board. A standard I2C
interface is provided to enable the main processor on the system board to configure and monitor the
XVF3510-INT. The processed voice signal is output over an I2S bus to the host system and the
XVF3510 receives its I2S audio reference signal for the Acoustic Echo Cancellation function.

Figure 1-1 XVF3510-INT Integrated configuration

1.3.2. XVF3510-UA CONFIGURATION

The XVF3510-UA device replaces the I2C interface of the XVF3510-INT with a USB2.0 compliant PHY
which supports a UAC1.0 audio device for both reference signal input and processed audio output.
In addition, the USB device supports a standard USB Endpoint 0 for device control and a standard
USB HID for status events. An optional I2S master interface is also available on the device to output
an audio signal to an external audio device.
The following block diagram illustrates the typical configuration.

Figure 1-2 XVF3510-UA Configuration for USB-only use case

 7

In addition to the standard USB configuration shown above, the XVF3510-UA also supports an
alternative configuration in which the AEC reference signal is supplied over an I2S bus.

Figure 1-3 XVF3510-UA Configuration using I2S audio reference

1.4. DEVICE FIRMWARE AND CONFIGURATION

The operation of the XVF3510 device is controlled through a firmware image that is loaded onto the
device when it is powered up. Two modes of operation are supported:

} The firmware image can either be stored in a QSPI Flash device which is read by the
XFV3510 processor automatically, or

} The firmware image is downloaded to the XVF3510 processor over the SPI interface by
the host processor on the system board.

Selection of the boot mode is made via setting the QSPI_D1/BOOTSEL pin on the device as described
in the datasheet.
The firmware image configures the XVF3510 into a standard, default operational mode. This mode can
be modified at startup via a set of configuration parameters that are stored in the flash device along
with the firmware in the XVF3510 Data Partition. These commands can be used to reconfigure the
device during startup, and also initialise other devices attached to it.
If the device firmware is downloaded from the host, then the data partition is not required and the
device is configured directly over the control interface.

 8

2. XVF3510 VOICE PROCESSOR ARCHITECTURE

2.1. OVERVIEW

The core of the XVF3510 voice processor is a high-performance audio processing pipeline that takes
its input from a pair of the microphone and executes a series of signal processing algorithms to extract
a voice signal from a complex soundscape. The audio pipeline can accept a reference signal from a
host system which is used to perform Acoustic Echo Cancellation (AEC) to remove audio being played
by the host. The audio pipeline provides two different output channels - one that is optimized for
Automatic Speech Recognition systems and the other for voice communications.
Flexible audio signal routing infrastructure and a range of digital inputs and outputs enable the
XVF3510 to be integrated into a wide range of system configurations, that can be configured at start
up and during operation through a set of control registers.
In addition, the XVF3510-UA variant supports a standard USB PHY interface which supports a UAC
audio device and device control over USB. The following sections describe the voice pipeline and the
surrounding infrastructure in more detail.

2.2. AUDIO PROCESSING PIPELINE

The audio processing pipeline is common to both the XVF3510-UA and XVF3510-INT firmware
variants. The signal processing chain is described below, with individual blocks and usage described
in more detail in subsequent sections.
The XVF3510 audio processing pipeline takes inputs from a pair of MEMS Pulse Density Modulation
(PDM) microphones and uses advanced signal processing to create audio streams suitable for use in
Automatic Speech Recognition (ASR) and voice communication applications. The pipeline enhances
the captured audio stream using a set of complementary signal enhancement and noise reduction
processes.

Figure 2-1 The XVF3510 audio pipeline

The pipeline takes its input from a pair of low-cost PDM microphones and converts this signal to PCM
for further processing:

} Acoustic Echo Cancellation (AEC): Continuously modelling the room acoustics allows the
AEC to remove audio being played into the room by the product which the XVF3510 is a
component of. A reference copy of the audio is provided to the AEC in order for it to
accurately estimate the echo.

} Automatic Delay Estimation & Control (ADEC): Automatically monitors and automatically
compensates for the delay between the reference audio and the echo received by the
microphone.

 9

Following echo cancellation, the ASR and communications paths diverge to permit parameter tuning
appropriate for the individual audio output use cases.

} Interference Cancellation (IC): Suppresses static noise from point sources such as cooker
hoods, washing machines, or radios for which there is no reference audio signal
available.

} Voice Activity Detection (VAD): Controls adaption the IC and AGC to optimise output for
near-end speech.

} Noise Suppression (NS): Suppresses diffuse noise from sources whose frequency
characteristics do not change rapidly over time (i.e., diffuse stationary noise).

} Automatic Gain Control (AGC): Controls the audio output level via separate AGC channels
for Automatic Speech Recognition (ASR) and communications output. The VAD is used to
prevent gain changes during speech to improve speech recognition performance.

The pipeline has been designed to minimise the need to tune and modify these functions. However, if
required for specific use cases, these later sections of this document provide details of the relevant
parameters and processes.

2.3. ASR AND COMMUNICATION PROCESSING

The audio pipeline discussed above produces two separate audio streams, one specifically tuned for
integration with keyword and ASR services and the other designed for conferencing and
communication applications. Both processed audio streams are available simultaneously on the left
and right channels of the USB and I2S audio outputs. The default configuration is as follows:

Table 2-1 Default channel mapping (both USB and I2S)

CHANNEL DEFAULT

[0] - Left ASR

[1] - Right Communications

In situations where an ASR is used to invoke a call it may be necessary to continually monitor the ASR
channel for a ‘end call’ intent. The parallel output of both ASR and Communications processed streams
allow the combination of high-quality calling audio with the tuned ASR capability.
The IO_MAP configuration parameter (see Signal flow and processing section) allows users to also
configure both channels to be ASR or Communications if required.

2.4. XVF3510-INT - FOR INTEGRATED VOICE INTERFACE APPLICATIONS

The XVF3510-INT product embeds the core audio processing pipeline in an audio infrastructure that
supports rate conversion, filtering and signal routing. This infrastructure is controllable by the host
system via a set of control registers. In addition, the XVF3510-INT provides a set of peripheral
interfaces to the host system to other devices, eg digital inputs, LEDs, SPI peripherals etc.
The peripheral interfaces supported include an interface to an optional QSPI Flash device containing
the XVF3510 firmware and configuration information that is loaded by the processor on startup.

 10

The system architecture of the XVF3510-INT is shown below.

Figure 2-2 XVF3510-INT System architecture

2.5. XVF3510-UA - FOR USB ACCESSORY VOICE INTERFACE APPLICATIONS

The XVF3510-UA variant includes the same audio infrastructure as the XFV3510-INT, but it includes a
USB interface that implements a UAC1.0 audio device to interface to the host system. The USB
interface also supports an Endpoint 0 control channel, and a USB HID to signal input events to the
host.
The system architecture of the XVF3510-UA is shown below.

Figure 2-3 XVF3510-UA System architecture

NOTE: The XVF3510-UA product also supports a hybrid mode of operation where the reference signal
is delivered via I2S rather than USB. This mode is selected via modification of the configuration data
stored in the flash device.

 11

3. PRINCIPLES OF CONFIGURATION, CONTROL AND USAGE
The XVF3510 is intended to be used to provide Far-Field voice to a host system or processor in speech
recognition and communication applications, either closely integrated to the main processor or as a
USB accessory. As such the XVF3510 provides boot mechanisms from either an external QSPI flash
or by the host processor over SPI interface.
To facilitate control in both boot configurations and to allow the specification of the default behaviour,
the XVF3510 implements two mechanisms for control and parameterisation. The first is the Control
Interface which is a direct connection between the host and the XVF3510 and is operational at runtime.
The second is the Data Partition which is held in flash and contains configuration data to parameterise
the XVF3510 on boot up. Both mechanisms have access to the full set of parameters and can both be
used in the application to control and specify the behaviour of the device.
A host tool (vfctrl) is also provided provides command-line access to the control interface, allowing
user access to all the configuration parameters of the XVF3510.
The following sections describe the following aspects of usage, configuration and control:

} Firmware release package.
} xTIMEComposer tools.
} vfctrl host command line tool.
} Configuration via a control interface.
} Configuration via the Data Partition.
} XVF3510 Development kits usage.

3.1. FIRMWARE RELEASE PACKAGE

There are two release packages available for the XVF3510, one for the XVF3510-UA and one for the
XVF3510-INT. Both are available to download via the links in Section 5.2 below.
Release packages and firmware builds are identified via a version number, which follows the standard
semantic version specification. The version number format is X.Y.Z, eg 4.0.0, and these numbers have
the following meaning.

Table 3-1 Firmware version number structure

DIGIT NAME MEANING

X Major version
number

Significant release of the firmware. The control interface may not be backwards compatible
with earlier versions

Y Minor version
number

New features added, but the control interface is backwards compatible with earlier host
applications

Z Patch version
number Bug fixes for incorrect functionality only. No change to host interface

The release version is contained in the file name of firmware file distribution and can also be read via
the control interface using the GET_VERSION command.

 12

Each package consists of several directories and files containing released firmware binaries, data-
partition tools, host binaries and host source code. A simplified directory structure is shown below.
├── bin
├── data-partition
│ ├── images
│ └── input
└── host
 ├── Linux
 │ └── bin
 ├── MAC
 │ └── bin
 ├── Pi
 │ ├── bin
 │ └── scripts
 ├── Win32
 │ └── bin
 └── src
 ├── dfu
 ├── dpgen
 └── vfctrl

Further information about each component of the release is as follows:

3.1.1. “BIN” DIRECTORY

This directory contains the released firmware for the XVF3510. There are two copies of the firmware;
one intended for loading from an external flash device and one for loading from an external host over
SPI (XVF3510 is the slave). Please refer to the SPI Slave boot section of the datasheet for connections
to the external boot source.

3.1.2. “DATA-PARTITION” DIRECTORY

The data partition contains configuration data for the XVF3510 firmware, implemented as a set of
commands that are run at boot time. The data partition is created using input command source files
and a set of tools which are described in the Data Partition section of this document. The contents of
the data-partition directory are as follows:
The root directory contains default data partition image source files (int.json or ua.json) as well
as the generic flash device specification 16mbit_12.5mhz_sector_4kb.spispec, data partition
generation scripts and short instructions about how to generate data partition binary files.

} The images subdirectory contains pre-generated data partition binary files generated
from the default data partition image source file. These files are suitable for direct
programming into the external flash along with the firmware, should the default settings be
suitable.

} The input subdirectory contains short command sequences which are referenced by the
data partition image source file when the data partition binary file is generated.

In addition, an output directory is created during the running of the data partition generation script
which contains the newly generated data partition binary file.

3.1.3. “HOST” DIRECTORY

This directory contains files and utilities relating to the host. The various host utilities that perform
parameter control, DFU and data partition generation are provided pre-compiled for Linux (ARM and
x86), Windows and MacOS platforms. These binaries can be found in the Linux, Pi, Mac and
Win32 directories along with an additional script in for the Pi release called
send_image_from_rpi.py which provides an example of sending an SPI boot image from the
host.
The root of the host directory also contains scripts for unpacking packed signals which can be
captured using the controls described in the signal routing section of this document.
Instructions for building the host utilities from the source are also provided in the same directory. The
source files for the host utilities are contained in the src sub-directory allowing building, modification
or integration into other projects.

 13

Within this directory there are three further sub-directories dfu, dpgen and vfctrl which contain the
source files (and dependent libraries) for the DFU, data partition generator and parameter control
utilities.

3.2. REQUIRED TOOLS

In order to update the firmware, modify and regenerate Data Partitions and rebuild the host utilities the
following tools are required.

3.2.1. XTIMECOMPOSER

The XMOS xTIMEcomposer contains a comprehensive suite of tools for compilation, debug and
programming of XMOS devices. It is available to download https://www.xmos.ai/software-tools

NOTE: At the time of writing v14.4.1 of the xTIMEcomposer tools is recommend for XVF3510 operation.

More recent versions may be available, but unless specified on the xmos.ai website they will not have
been tested and verified for operation with XVF3510.
Further information about the full tool suite, including installation instructions for different platforms is
available here in the xTIMEcomposer user guide, available from https://www.xmos.ai/file/tools-user-
guide
The XVF3510 Voice Processor is provided in two pre-compiled builds (-UA and -INT) and as such only
requires the usage of the xTIMEcomposer programming tools, specifically xFLASH. This operates as
a command-line application, to create the boot image, and if using flash, program the boot image to
the attached device.

An XTAG debugger must be connected to the XVF3510 for flash programming operations. Refer to the
Development Kit User Guide for information on using XTAG connections to XVF3510 development kits.

The basic form of the xFLASH command for flash image creation and programming with a data
partition is as follows (note multiple lines have been used for clarity, but command should be executed
on single line).
xflash --no-compression --boot-partition-size 1048576
 --factory [Application executable (.xe)]
 --data [Data partition description (.bin)]

For boot image generation over SPI from a host processor the following command is used:
Oculus Reparo (or the xFLASH equivalent)

} Application executable (.xe) - The .xe file is a boot image provided with a VocalFusion
release package in one of the supported configurations (-UA or -INT product variants).

} Data partition description (.bin)- The .bin file is a data partition description either supplied
in the release package (-UA or -INT) or customised as described later in this guide.

NOTE: Running xTIMEcomposer on macOS Catalina triggers a security issue. The resolution is
detailed on the website here : https://www.xmos.ai/file/running-xtimecomposer-on-macos-catalina/

3.2.2. PYTHON 3

Some operations, such as running the SPI boot example on the Raspberry Pi, require the use of Python
3 (v3.7 onward is recommended). Python can be downloaded from http://python.org/downloads.

3.2.3. HOST BUILD TOOLS

In order to build the host utilities, the use of a platform-specific compiler is required.

 14

WINDOWS
The host utilities are built with the x86 Native Tools Command Prompt for VS which is installed as part
of the Build Tools for Visual Studio. This can be downloaded from Microsoft website (at the time of
writing latest versions available here: https://visualstudio.microsoft.com/downloads/#build-tools-for-
visual-studio-2019). It is important to ensure that the optional C++ CMake tools for Windows are
included when setting up the installation.

LINUX
Depending on the distribution and version of Linux used, the following packages may need to be
installed:
sudo apt-get install -y build-essential
sudo apt-get install -y pkg-config
sudo apt-get install -y libusb-1.0-0-dev

MAC OS
The XCode Command Line tools are required to build in on macOS. The following command can be
used to install the tools.
xcode-select --install

3.3. COMMAND-LINE INTERFACE (VFCTRL)

To allow command-line access to the control interface on the XVF3510 processor, the vfctrl
(VocalFusion Control) utility is provided as part of the release package. This utility
Two versions of this utility are provided for control of the device (a third is used internally by the Data
Partition generation process):

Table 3-2 vfctrl versions and platforms

VERSION FUNCTION HOST PLATFORMS SUPPORTED

vfctrl_usb Control of XVF3510-UA over a USB interface Windows, MacOS, Linux, Raspbian

vfctrl_i2c Control of XVF3510-INT over i2c interface Raspberry Pi (Raspbian) only

Source code for the utility is also provided for compilation for other host devices if required.
The general syntax of the command line tool, when used for device control, is as follows:
vfctrl_usb <COMMAND_VERB> [arg 1] [arg 2]....[arg N] [# Comment]

The <COMMAND_VERB> is required and is used to control the parameters of the device. Commands
can be read and write commands and are distinguished by the prefix ‘GET_’ and ‘SET_’ for parameter
read and write respectively.
The available commands are described in detail in specific sections later in this document, and a
summary table of all the parameters is provided in Appendix A.
Following the <COMMAND_VERB> there are a number of optional arguments [arg 1]..[arg N] which
depend on the specific parameter. These are detailed in the command tables later in the document.
If the <COMMAND_VERB> is are GET_ command, the output of the operation is printed to the terminal
as in the example below:
vfctrl_usb GET_GPI
GET_GPI: 13

The number and type of arguments depend on the command and these are detailed in the command
tables. Arguments are integer numbers separated by a space. For setting some parameters that
require floating-point data, the numbers have to be first converted to a Q format and then transferred
as integers.
The specification of the Q format for representing floating-point numbers is given in Appendix H.

 15

A secondary form of vfctrl is also available which provides information for developers
vfctrl [options]

Where [options] can be:
-h, --help : List all command options
-d, --dump-params : Print list of parameter values
-n, --no-check-version : Do not check version of firmware image

3.4. CONFIGURATION VIA CONTROL INTERFACE

The XVF3510 Voice Processor contains parameters which can be read and written by the host
processor at run time. For information writing parameters at boot time for initial configuration, please
see the section on the Data Partition later in this document.
The XVF3510 firmware is provided as two pre-compiled builds, -UA and -INT, which provide a
parameter control mechanism over USB endpoint 0 and I2C respectively.
Device functions have controllable parameters for the audio pipeline, GPIO, sample rate settings,
audio muxing, timing and general device setup and adjustment. Commands support either read using
the GET_ prefix or write using the SET_ prefix. Controllable parameters may either be readable and
writeable, read-only or write-only. Various data types are supported including signed/unsigned integer
of either 8b or 32b, fixed point signed/unsigned and floating-point.
In addition, the -UA build includes volume controls for input (processed mic from XVF3510) and output
(far-end reference signal). These are USB Audio Class 1.0 compliant controls and are accessed via
the host OS audio control panel instead of the XVF3510 control interface. The volumes are initialised
to 100% (0dB attenuation) on device power up, which is the recommended setting.
Ensure that the XVF3510-UA USB Audio input and output volume controls on the host are set to 100%
(no attenuation) to ensure proper operation of the device. Some host OS (eg. Windows) may store
volume setting in between device connections.
For a comprehensive list of parameters, their data types and an understanding of their function within
the device please consult the User Guide section relevant to the function of interest, or Appendix A
which summarises all the commands. The control utility can also be used by supplying the -h
argument to the command line. This dumps a list of commands to the console along with a brief
description of the function of each command. The remainder of this section will cover the generic
operation of the control interface.

3.4.1. CONTROL OPERATION

The control interface works by sending a message from the host to the control process within the
XVF3510 device. The time required to execute commands can vary, but most will respond within 30ms.
Since the commands are fully acknowledged, by design, the control utility blocks until completion.
This interface is designed to allow real-time tuning and adjustment but may stall due to bus access or
data retrieval.
The control interface consists of two parts a host side application and the device application. These
are briefly summarised below.

3.4.2. HOST APPLICATION

The example host applications, found in the /host directory in the Release Package, are command-
line utilities that accept text commands and, in the case of a read, provides a text response containing
the read parameter(s). Full acknowledgement is included in the protocol and an error is returned in
the case of the command not being executed properly or handled correctly by the device.
Example host source code and makefiles for are provided in the release package for x86 Linux, ARM
Linux (Raspberry Pi), Windows and Mac platforms along with pre-compiled executables to allow fast
evaluation and integration. For more information refer to the Building the host utilities from source code
section.

 16

3.4.3. DEVICE APPLICATION

The device is always ready to receive commands. The device includes command buffering and an
asynchronous mechanism which means that Endpoint 0, NACKing for USB or clock stretching for I2C
is not required. This simplifies the host requirements particularly in the cases where clock stretching
is not supported by the host I2C peripheral.

3.5. CONFIGURATION VIA DATA PARTITION

VocalFusion device flash firmware configuration is comprised of a Boot image and a Data Partition.
} The Boot image in the form of an .xe archive is the executable code. It is provided as part

of the XVF3510-UA or XVF3510-INT Release Package. This configures the underlying
operation of the device.

} The Data Partition configures a running Boot image instance at startup with a set of
commands which are customisable for the specific application. This contains any
command that can be issued at run-time via USB or I2C, plus some more that are boot-
time only. Pre-configured Data Partitions are supplied in the release packages for default
operation.

This combination of Boot image and Data Partition allow the functionality of the processor to be
configured and defined without requiring any modification or recompilation of base firmware. The
commands discussed in subsequent sections can be stored in the Data Partition, for execution at
startup redefining the default operation of the device.

3.6. XVF3510 DEVELOPMENT KITS

There are two variants of development kit available: VocalFusion development kit and VocalFusion
development kit for Amazon AVS. These two kits share the same hardware but differ in the firmware
which is pre-loaded into the flash memory of each kit. This is shown below:

Table 3-3 Development kit variants and firmware pre-loaded

DEVELOPMENT KIT FIRMWARE
LOADED NOTES

VocalFusion development kit for
Amazon AVS XVF3510-INT

https://www.xmos.ai/vocalfusion-voice-interfaces/#3510-dev-kits
Firmware named “XVF3510 I2S Firmware binary.xe” in early v0.12.0
release

VocalFusion development kit XVF3510-UA
https://www.xmos.ai/vocalfusion-voice-interfaces/#3510-dev-kits
Firmware named “XVF3510 Adaptive USB Firmware binary.xe” in
early v0.12.0 release

NOTE: Users are recommended to check the website for the latest firmware update, and to follow the
instructions below to update the stored firmware before operation.

The VocalFusion development kit for Amazon AVS, associated setup documents and host code enable
users to build a complete Amazon Alexa endpoint with the addition of a Raspberry PI (not supplied).
The XVF3510-INT connects to the Raspberry PI using I2S for audio, and I2C for control.

 17

 The signal flow through the development kit is shown below.

Figure 3-1 Signal flow of the VocalFusion development kit for Amazon AVS (XVF3510-INT)

The VocalFusion development kit provides a USB connection for audio and control. This can be used
for evaluation of other ASRs or simply connected to a laptop or computer for audio analysis. In this
configuration only the XVF3510 processor board and Microphone Array board are required. The signal
flow is shown below:

Figure 3-2 Signal flow of the VocalFusion dev kit (XVF3510-UA)

NOTE: In order to operate the latest firmware releases on development kits with revision numbers 1V0
and 1V1, a simple modification is required. This is detailed in a design advisory available on the website
https://www.xmos.ai/file/xvf3510-development-kit-design-advisory

3.7. UPDATING THE FIRMWARE

As described above the hardware used on both development kits are identical allowing both firmware
variants, -UA and -INT to operate correctly on either kit. The following steps should be used to update
the firmware on the device.

1. Download the xTIMEcomposer tools from https://www.xmos.ai/software-tools and install onto
the system that will be connected to the board to perform the update.
2. Download the latest version of the required XVF3510 Release Package from

XVF3510-UA Release https://www.xmos.ai/file/xvf3510-ua-release

XVF3510-INT Release https://www.xmos.ai/file/xvf3510-int-release

At the time of writing v4.2 is the latest released version.

 18

3. Connect the XTAG Debugger to the system using the micro USB connection, plug the
debugger into the XTAG connector, marked ‘DEBUG ONLY’, and power the board using micro
USB connection marked USB on the XMOS processor board. (The power can be supplied via a
USB connection from the system used to update, or a Raspberry Pi if used). The positions of
these connectors are shown in the figure below:

Figure 3-3 Location of Debug and power connectors on XVF3510 Development Kit Processor Board.

4. Open up an ‘xTIMEComposer Command Prompt’, or configure a terminal window using the
appropriate setEnv script defined for the platform. For further information please consult the
xTIMEcomposer User Guide (https://www.xmos.ai/file/tools-user-guide)
5. From the ‘xTIMEComposer Command Prompt’ or configured terminal window, navigate to the
location of the Release Pack root directory. If installing the XVF3510-INT use the following command
to re-flash the board with the updated XVF3510-INT firmware (note multiple lines have been used for
clarity in command examples, but should be executed on single line):
xflash --no-compression --boot-partition-size 1048576
 --factory bin\app_xvf3510_int_vX_X_X.xe
 --data data-partition\images\data_partition_factory_int_vX_X_X.bin

If installing the XVF3510-UA use the following command to re-flash the board with the latest XVF3510-
UA firmware:
xflash --no-compression --boot-partition-size 1048576
 --factory bin\app_xvf3510_ua_vX_X_X.xe
 --data data-partition\images\data_partition_factory_ua_vX_X_X.bin

Once the process has completed the following message indicates successful completion:
Site 0 has finished successfully.

The board is now configured with the latest version of XVF3510-INT or XVF3510-UA firmware.

 19

3.8. OPERATION

The basic operation of both development kit options is described in the sections below.

3.8.1. XVF3510-INT AMAZON AVS DEMONSTRATION

The VocalFusion dev kit for Amazon AVS uses the XVF3510-INT to provide far-field voice to an AVS
client running on a Raspberry Pi (not provided in development kit). The VocalFusion Development Kit
for Amazon AVS Quick Start Guide and VocalFusion Development Kit for Amazon AVS User Guide
detail the setup and usage instructions.
These guides can be downloaded from https://www.xmos.ai/file/xvf3510-dev-kit-setup-guides
The procedure for setting up the Amazon AVS SDK on the VocalFusion Development Kit can be found
at
https://github.com/xmos/vocalfusion-avs-setup

Now the system will operate as an AVS endpoint using the XVF3510-INT as a Far-Field microphone,
and Raspberry Pi to perform keyword detection and run the client. If the option to start the client
automatically has been selected it will start on boot, otherwise, the following command should be from
a Raspberry Pi terminal.
avsrun

Control and configuration of the XVF3510-INT is achieved using the I2C control interface. A
VocalFusion Host Control application, (vfctrl_i2c), is provided pre-compiled and as source code for
this purpose.
The following steps explain how to use the host control application.
1. Copy the host directory of the Firmware Release Pack to the Raspberry Pi.
2. Navigate from a terminal window to the copied host directory and execute the following command

to list the supported commands and the general form of the utility usage.
./pi/bin/vfctrl_i2c --help

To verify that the system is setup correctly use the following command to list the I2C devices detected
on the bus. The XVF3510-INT should appear at bus address 0x2C.
i2cdetect -y 1

If the XVF3510-INT is detected on the bus, but vfctrl_i2c returns the error:
rdwr ioctl error -1: No such device or address

check that the I2S clocks (MCLK, BCLK and LRCLK) are present and operational. Control requests
can only be serviced when the I2S clocks are active.

3.8.2. XVF3510-UA USB CONNECTED DEMONSTRATION

The VocalFusion dev kit uses the XVF3510-UA to implement a USB Audio Class 1.0 (UAC 1.0) Far-
field microphone, which can be connected to any USB host which can support UAC 1.0, such as
laptop computers running Windows, Linux or macOS or Single Board Computer (SBC) systems
running Linux or Android. The VocalFusion dev kit user guide and the VocalFusion development kit
quick start guide detail the setup and usage instructions. These guides can be downloaded from
https://www.xmos.ai/file/xvf3510-dev-kit-setup-guides
For completeness, the set-up procedure is also summarised below.

} Connect the USB Host (eg. laptop or SBC) to the XVF3510-UA via a USB cable, and
connect speakers to the host processor system. Once connected the XVF3510 will
enumerate as “XVF3510 (UAC1.0) Adaptive”.

} Next configure the output audio paths in the system such that both the speaker output
and AEC reference paths (USB) are active. Details on how to enable this in Windows,
MAC OS and Linux are provided in the User guide and quick start guides referenced
above. Once configured, audio that is played out of the speakers will simultaneously be
sent to the XVF3510 over USB providing a reference channel for the AEC.

 20

} Now the audio capabilities of the system can be explored using an audio analysis
package such as Audacity to record and playback audio to evaluate the far-field
performance, noise suppression, and echo cancellation.

Control and configuration of the XVF3510-UA are achieved using via the control interface implemented
over USB. A VocalFusion Host Control application, vfctrl_usb, is provided pre-compiled and as source
code for this purpose.
For cross-platform support vfctrl_usb uses libusb. While this is natively supported in macOS and most
Linux distributions, it requires the installation of a driver for use on a Windows host. Driver installation
should be done using a third-party installation tool like Zadig (https://zadig.akeo.ie/). The following
steps show how to install the libusb driver using Zadig:

} Connect the XVF3510 board to the host PC using a USB cable.
} Open Zadig and select XMOS Control (Interface 3) from the list of devices. If the device is

not present, ensure Options -> List All Devices is checked.
} Select libusb-win32 from the list of drivers.

} Click Reinstall Driver.
Once installed the vfctrl_usb utility is ready to use. The following steps explain how to use the host
control utility.

} Copy the host directory of the Firmware Release Pack to the host platform.
2. Navigate, from a terminal window, to the copied host directory and execute one of the following
commands, depending on the specific platform, to list the supported commands and the general form
of the utility usage.
For Linux hosts use:

./Linux/bin/vfctrl_usb --help

For macOS hosts:

./MAC/bin/vfctrl_usb --help

For Windows hosts:
.\WIN32\bin\vfctrl_usb --help

 21

3.8.3. HOST UTILITIES

There are seven host utilities provided in the VocalFusion XVF3510 Release Package as pre-compiled
utilities and also as source code to allow rebuilding other system architectures. The utilities are
summarised below:
data_partition_generator, vfctrl_json - Uses .json configuration definition and generates
binary Data Partitions for download to flash memory. vfctrl_json is used internally by the
data_partition_generator but is referenced here for completeness.
dfu_suffix_generator - Adds DFU suffix to binary Boot Images and binary Data Partitions to
protect the device from accidental DFU of incompatible image partition pair.
dfu_usb, dfu_i2c - DFU utilities for XVF3510-UA, XVF3510-INT respectively
vfctrl_usb, vfctrl_i2c - Vocal Fusion Control Utilities for the XVF3510-UA and XVF3510-INT
respectively.
The pre-compiled versions are found in the following platform sub-directories within the host directory:
/host/Linux for Linux based systems
/host/MAC for macOS
/host/Pi for Raspbian based Raspberry Pi systems
\host\Win32 for Windows platforms.

3.8.4. BUILDING THE HOST UTILITIES FROM SOURCE CODE

The source code for these utilities is provided in the following directory:
\host\src
The steps to build each utility are described in the Release Package here:
\host\how_to_build_host_apps.rst

 22

3.8.5. DEFAULT OPERATION

The following table details the default configuration for the XVF3510-UA and XVF3510-INT firmware
v4.2 after update using the procedure described above.

PARAMETER DEFAULT - UA DEFAULT -INT CONFIGURABLE?

Version (x=patch version) v4.2.x v4.2.x N

Reference input FROM host
USB UAC 1.0
48k samples/s PCM
16-bit resolution

I2S slave
48k samples/s PCM
32-bit resolution

Y (prior to microphone
and I2S start up

Reference format 1 or 2 channel (Mono /
Stereo)

1 or 2 channel (Mono /
Stereo) N

Processed audio output TO host
USB UAC 1.0
48k samples/s PCM
16-bit resolution

I2S bus
48k samples/s PCM
32-bit resolution

Y (prior to microphone
and I2S start up

Audio format to host
2 channel - two different
streams
CH[0] - ASR
CH[1] - Comms

2 channel - two different
streams
CH[0] - ASR
CH[1] - Comms

Y

USB Product String XVF3510 (UAC1.0)
Adaptive -n/a- Y

USB Vendor ID 0x20B1 (8369) -n/a- Y

USB Product ID 0x0014 (20) -n/a- Y

USB Vendor String XMOS -n/a- Y

USB Serial Number null -n/a- Y

I2C address N/A 0X2C N

MCLK 24.576MHz OUTPUT 24.576MHz INPUT Y

Acoustic Echo Canceller Enabled Enabled Y

Automatic Delay Estimator Activated once on startup Activated once on startup Y

Interference Canceller Enabled Enabled Y

Noise suppressor Enabled Enabled Y

 23

4. XVF3510 FEATURES AND CONFIGURATION
This section describes in detail the features and configuration of the XVF3510 voice processor. It is
organised into four sections which cover the main aspects of usage and configuration:

} Booting;
} Configuration and the Data Partition;
} Interfaces, Audio Routing and filtering;
} Far-field voice processing.

4.1. BOOTING

As demonstrated with the VocalFusion development kits the standard mechanism for booting is from
an attached QSPI Flash device. This provides standalone operation, and persistent storage for
configuration data. VocalFusion XVF3510 supports device firmware upgrade (DFU) over USB (-UA
product variant) and I2C (-INT product variant). Pre-compiled host utilities, and source code for
reference, are supplied for performing DFU operations. The pre-compiled utilities can be found in the
release package in one of the host architecture directories eg. host\Win32\bin\dfu_usb.exe,
and the source code in host\src\dfu.
NOTE: While the functionality of the DFU is similar to the USB DFU specification, it has diverged to
accommodate both USB and I2C operation and therefore is not compatible with compliant USB DFU
tools.
The following sections discuss the structure of data within the flash memory, and operation of DFU.

4.1.1. FLASH STORAGE STRUCTURE

The structure of data within the VocalFusion XVF3510 is arranged to contain a factory image, a single
upgrade image, device serial numbers and data partitions for both the factory and upgrade image.
This is shown below.

Figure 4-1 Flash data structure for VocalFusion XVF3510

} The factory boot image is the executable code for VocalFusion and is supplied in the
Release Package in the bin directory. The file format is xe, which refers to XMOS
Executable. This is written to the device via the XTAG debugger or through a bulk flash
programming operation.

} The upgrade boot image, if present, is the executable code written to the flash memory
via a DFU operation. Generation of the upgrade boot image is covered below.

} The HW build info is specified in the .json Data Partition file for the factory image and is
written at the same time as the factory image and Data Partition. It is a unique identifier
which is unaffected by subsequent DFU upgrade operations.

} The Serial Number is a custom field which can be programmed via USB and I2S control
interfaces and remains untouched by the subsequent DFU operations.

} The Factory and Upgrade Data Partitions are the associated Data Partitions for the
Factory and Upgrade images (where upgrade is present). They are written to flash in the
same operation as the boot images. For more information on the generation and usage of
Data Partitions see Configuration and the Data Partition section.

NOTE: Storage of only a single upgrade boot image and Data Partition pair are supported. Therefore,
any Upgrade image applied will overwrite any existing upgrade image present.

 24

A summary of the factory programming and field update process for flash-based systems is shown in
the Appendix I: Flash programming and update flow.

4.1.2. PROGRAMMING THE FACTORY BOOT IMAGE AND DATA PARTITION

The process to program the Factory Boot image and Data Partition is described in the Updating the
firmware section.

4.1.3. UPGRADE IMAGES AND DATA PARTITIONS

In order to be able to apply an Upgrade image to the device it must be programmed with a Factory
Image and Data Partition as described above.
The DFU process requires the use of two utilities, dfu_usb or dfu_i2c, depending on the firmware
variant, and dfu_suffix_generator. Precompiled versions are provided as part of the Release
Package in the appropriate platform directory in \host (eg. \host\Win32\bin), and the source
code for the DFU utility is provided in the \host\src\dfu directory. For more information on building
the host applications refer to the build instruction file in \host\how_to_build_host_apps.rst in
the Release Package.
In addition to the DFU utilities, the Upgrade image and Data Partition are required. These are provided
in the Release Package in the \bin and \data-partition\images. Generation of custom Data
Partitions is detailed in the Configuration and the Data Partition section. There are a number of stages
required to prepare and execute a DFU to ensure are safe and successful update. These are detailed
below.

GENERATION OF BINARY UPGRADE IMAGE
First, the Upgrade Image (.xe) needs to be converted to a binary format. Use xflash and the following
command to convert the .xe image into a binary form (note multiple lines have been used for clarity
in command examples, but should be executed on single line):
xflash --no-compression --noinq --factory-version 14.3
 --upgrade [UPGRADE_VERSION] [UPGRADE_EXECUTABLE] -o [OUTPUT_BINARY_NAME]

Even though the latest and recommended version of the tools is version 14.4.x, for legacy reasons we
specify --factory-version value of 14.3. (The 14.3 value refers to boot loader API while 14.4 is
toolchain version that retained the 14.3 API.)
NOTE: Should a different version of the tools be used, for example a future release, the version number
should be noted such that an update image of compatible format can be created.
The upgrade version number is specified with --upgrade. The format is as follows 16bit 0xJJMP
where J is major, M is minor and P is point.
For example, to create an upgrade Binary image for a -UA system, from the v4.0.0 Release Package
use the following command:
xflash --no-compression --noinq --factory-version 14.3
 --upgrade 0x0400 app_xvf3510_ua_v4.0.0.xe -o app_xvf3510_ua_v4.0.0.bin

ADDITION OF DFU SUFFIX TO BINARY FILES
To prevent accidental upgrade of an incompatible image both the binary Upgrade image and the Data
Partition binary must be signed using the provided dfu_suffix_generator which can be found
pre-compiled in the host platform directory of the release package eg. \host\MAC\bin.
This mechanism embeds a structure into the binary files which can be read by the DFU tool to check
that the binary data is appropriate for the connected device, prior to executing.
The general form of usage for the dfu_suffix_generator is as follows:
dfu_suffix_generator VENDOR_ID PRODUCT_ID [BCD_DEVICE] BINARY_INPUT_FILE
BINARY_OUTPUT_FILE

VENDOR_ID, PRODUCT_ID and BCD_DEVICE are non-zero 16bit values decimal or hexadecimal
format, 0xFFFF bypassing verification of this field.
When building Upgrade images for XVF3510-UA devices, the USB Vendor Identifier (VID) and USB
Product Identifier (PID) are added to the header and then checked by the DFU utility that the

 25

connected device matches. An error is reported by the tool if there is no match with the connected
device.
For XVF3510-INT devices both Vendor and Product ID fields should be set to 0xFFFF for the
generation. This instructs the DFU to bypass the checking as there is no equivalent to the USB
identifiers for I2C systems. However, even though the checking is bypassed for the XVF3510-INT the
suffix must be added to both Upgrade and Data partition files as the DFU utility checks the integrity of
the binaries based on this information.
The following examples show how to add DFU Suffix to Update binaries for both XVF3510-INT and
XVF3510-UA products.
For XVF3510-UA (default XMOS Vendor and XVF3510-UA product identifiers are used for illustration):
dfu_suffix_generator.exe 0x20B1 0x0014 app_xvf3510_ua_v4.0.0.bin boot.dfu
dfu_suffix_generator.exe 0x20B1 0x0014 data_partition_upgrade_ua_v4_0_0.bin
data.dfu

For XVF3510-INT:
dfu_suffix_generator.exe 0xFFFF 0xFFFF app_xvf3510_int_v4.0.0.bin boot.dfu
dfu_suffix_generator.exe 0xFFFF 0xFFFF data_partition_upgrade_int_v4_0_0.bin
data.dfu

NOTE: Extreme care must be taken if modifying the default Vendor and Product IDs through a Data
Partition. If configuration from Data Partition fails the USB VID and PID will remain at their default values
(VID=0x20B1, PID=0x0014) and DFU requests for signed files with modified will not be allowed.

PERFORMING DFU
The pre-compiled DFU utility is provided in the Release Package in the host architecture directory eg.
\host\Linux\bin. For MAC, Linux and Windows the DFU_USB is provided, and for PI DFU_I2C is
provided. The source code can be used to rebuild either version on the required platform.
The general form of dfu_usb utility is as follows:
dfu_usb [OPTIONS] write_upgrade BOOT_IMAGE_BINARY DATA_PARTITION_BIN

OPTIONS: --quiet
 --vendor-id 0x20B1 (default)
 --product-id 0x0014 (default)
 --bcd-device 0xFFFF (default)
 --block-size 128 (default)

and the general form of the dfu_i2c utility is shown below:
dfu_i2c [OPTIONS] write_upgrade BOOT_IMAGE_BINARY DATA_PARTITION_BIN

OPTIONS: --quiet
 --i2c-address 0x2c (default)
 --block-size 128 (default)

The two binary files passed to the utility, the boot image and data partition, must have the DFU suffix
present otherwise the DFU utility will generate an error. Example DFU utility usage is shown for both
XVF3510-UA and XVF3510-INT below.
For XVF3510-UA:
dfu_usb --vendor-id 0x20B1 --product-id 0x0014 write_upgrade boot.dfu data.dfu

and for XVF3510-INT:
dfu_i2c write_upgrade boot.dfu data.dfu

 26

Once complete the following message will be returned and the device will reboot. In the case of
XVF3510-UA the device will re-enumerate.
write upgrade successful

For verification that DFU has succeeded as planned, the vfctrl utility can be used to query the firmware
version before and after update. For example, to query the version of XVF3510-UA the following
command is used:
vfctrl_usb GET_VERSION

NOTE: The vfctrl utilities check the version number of the connected device to ensure correct
operation. To suppress an error caused by a disparity in the version of vfctrl and upgraded firmware
the --no-check-version option can be used with the utility.

4.1.4. FACTORY RESTORE

To restore the device to its factory configuration, effectively discarding any upgrades made, the same
process as outlined above is followed but using a blank Boot Image and Data Partition.
This is the only way a restore can be initiated as the device does not have the ability to restore itself.
The same blank file can be used for both Boot Image and Data partition and can be generated using
dd on MAC and Linux, and fsutil in windows as shown below:
An blank image can be created with a file of zeroes the size of one flash sector. In the normal case of
4KB sectors on a UNIX-compatible platform, this can be created as follows:
dd bs=4096 count=1 < /dev/zero 2>/dev/null blank.dfu

and for Windows systems:
fsutil file createNew blank.dfu 4096

The process outlined in the Generation and application of Upgrade Image and Data Partition section
can now be followed using the blank.dfu file for both Boot Image and Data Partition.

4.1.5. BOOT IMAGE AND DATA PARTITION COMPATIBILITY CHECKS

The format of Data Partitions and Boot Images may change between version increments. Therefore to
prevent incompatible Boot and Data Partitions from running and causing undefined behaviour, a field
called compatibility version is embedded into the Data Partition. A running Boot Image checks
its own version, against the compatibility version in the Data Partition before reading the
partition data.
The version of the firmware should also be specified in the --upgrade argument of xflash when
generating the Upgrade Image as described previously.
If the compatibility check fails, the booted image, which could be a factory image or an upgrade image
will not read the Data Partition and will operate with its default settings (described in Default Operation
section above). The Boot status is reported in the RUN_STATUS register which can be accessed via
the vfctrl utility, for example:
vfctrl_usb.exe GET_RUN_STATUS

Successful Boot status is reported by either FACTORY_DATA_SUCCESS or UPGRADE_DATA_SUCCESS
depending on which Boot Image was executed.
If unsuccessful the device will revert to a fail-safe mode of operation. The RUN_STATUS register can
be queried for further debug information. The full list of RUN_STATUS codes are described in the
Appendix B: Boot Status codes (RUN_STATUS).
NOTE: Fail safe mode uses default vendor ID of 0x20B1 (XMOS) and product ID of 0x14. In this event,
host needs to be equipped with the ability to locate USB device under different IDs.

4.1.6. CUSTOM FLASH MEMORY DEVICES

The majority of QSPI flash devices conform to the same set of parameters which define the access
and usage of flash devices. However, to support instances when the flash interface parameters are
different, the following section explains how to define a custom flash interface.

 27

Details of the flash device used to store the Boot Image and Data Partition data must be specified in
two locations to ensure successful Factory programming and the ability to execute DFU to Upgrade
the firmware. The Development kit uses a standard QSPI flash device which is representative of most
2MByte QSPI devices.

CUSTOM FLASH DEFINITION FOR FACTORY PROGRAMMING
During the Factory programming procedure, using the XMOS XTAG debugger, the specification of the
flash device is used to create the loader which is responsible for downloading the Boot Image from
flash and to the device. The flash specification is provided to XFLASH, as described in the Updating
the Firmware section, using a SPISPEC file. A representative SPISPEC file, which supports the majority
of QSPI flash devices and the Development Kits is provided in the Release Package here:
\data-partition\16mbit_12.5mhz_sector_4kb.spispec
This is a text file and must be modified with any differing parameters. An example .spispec file is shown
in Appendix C: Example .SPISPEC File Format section.

CUSTOM FLASH DEFINITION FOR DATA PARTITION GENERATION
The SPISPEC file must also be included in the Data Partition, along with the Sector size so that DFU
operations can be executed correctly.
NOTE: Due to the nature of the DFU function, it is critically important to test the execution of the DFU
process in a target system prior to production manufacturing.

4.1.7. SPI SLAVE BOOT

This process was changed from V4.1 of the firmware

Both -UA and -INT configurations of XVF3510 have an SPI slave boot mode, in addition to the boot
from flash mode. The SPI slave boot downloads the boot image in binary form, provided in the Release
Package. This is illustrated using a Raspberry Pi and the Python script to manage the transfer as
discussed below.

SPI BOOT OF XVF3510-INT USING DEVELOPMENT KIT AND RASPBERRY PI
Using the Development Kit, assembled as described in section XVF3510-INT Amazon AVS
demonstration, and the XVF3510-INT Release Package available on the Raspberry Pi, a SPI boot can
be executed by following the steps below:

1.Using a terminal console on the Raspberry Pi, navigate to the location of the XVF3510-INT
Release Package.
2. Use the following command to execute the SPI boot process booting the XVF3510-INT firmware
in the Release Package (replacing vX_X_X with the appropriate version number):

python3 host/Pi/scripts/send_image_from_rpi.py
 bin/app_xvf3510_int_spi_boot_vX_X_X.bin --delay

The device should be ready within 3 seconds.
3. Update the main clock in to PDM clock specific using the VocalFusion Control Utility vfctrl_i2c:

./host/Pi/bin/vfctrl_i2c SET_MCLK_IN_TO_PDM_CLK_DIVIDER 1

4. Configure any system specific settings using the VocalFusion Control Utility vfctrl_i2c.
5. Start the XVF3510 processing and interfaces by issuing the following commands over the
VocalFusion control utility:

./host/Pi/bin/vfctrl_i2c SET_MIC_START_STATUS 1

./host/Pi/bin/vfctrl_i2c SET_I2S_START_STATUS 1

NOTE: Following an SPI boot the XVF3510 will not read any Data Partition that may be present in
flash memory. This is the reason why step 3 is necessary, the command
SET_MCLK_IN_TO_PDM_CLK_DIVIDER is included in the Data Partition for XVF3510-INT.

 28

SPI BOOT OF XVF3510-UA USING DEVELOPMENT KIT AND RASPBERRY PI

NOTE: To illustrate the SPI Boot of XVF3510-UA on the development kit custom connection must be
made between Pi Hat and XVF3510 Processor board. The connection is discussed in more detail in
Appendix D: SPI Boot custom connection.
Using the XVF3510-UA Release Package available on the Raspberry Pi, a SPI boot can be executed
by following the steps below:

1.Using a terminal console on the Raspberry Pi, navigate to the location of the XVF3510-UA
Release Package.
2. Use the following command to execute the SPI boot process booting the XVF3510-UA firmware
in the Release Package (replacing vX_X_X with the appropriate version number):

python3 host/Pi/scripts/send_image_from_rpi.py
 bin/app_xvf3510_ua_spi_boot_vX_X_X.bin --delay

The device should be boot within 3 seconds.
NOTE: The delay start mode is not available for XVF3510-UA.

4.2. CONFIGURATION AND THE DATA PARTITION

As described in a previous section, when using flash to boot the XVF3510 processor, the Data partition
can be used to store commands which are executed immediately after boot-up to configure and define
the functionality of the device. The following sections describe the definition of the Data Partition, how
to generate, and the customisation for specific applications.

4.2.1. DATA PARTITION DEFINITION

PARTITION FILE STRUCTURE
The contents of a Data Partition are defined in a .json file which is passed to a generation script which
forms the binary files used when flashing the device. The generation process is described below, after
the definition .json file is described.
For the purpose of explanation consider the following example for a custom XVF3510-UA Data
Partition:
{
 "comment": "",
 "spispec_path": "16mbit_12.5mhz_sector_4kb.spispec",
 "regular_sector_size": "4096",
 "hardware_build": "0xFFFFFFFF",
 "item_files": [
 { "path": "input/usb_to_device_rate_48k.txt", "comment": "" },
 { "path": "input/device_to_usb_rate_48k.txt", "comment": "" },
 { "path": "input/usb_mclk_divider.txt", "comment": "" },
 { "path": "input/xmos_usb_params.txt", "comment": "" },
 { "path": "input/i2s_rate_16k.txt", "comment": "" },
 { "path": "input/led_after_boot.txt", "comment":"" }
]
}

Comment pairs are provided for the .json configuration, but also the individual item files:
 { "comment": "" }

A running VocalFusion device needs to know size and geometry of its external QSPI flash in order to
write firmware upgrades to it. This is added to a Data Partition in the form of a flash specification or
SPI specification (See Appendix C for custom flash support)
 { "spispec_path": "16mbit_12.5mhz_sector_4kb.spispec" }

 29

The Data Partition generation process aligns various sections onto flash sectors, and needs to know
the sector size (this can be found in the flash device datasheet):
 { "regular_sector_size": "4096" }

Hardware build is a custom-defined, 32bit identifier written to flash along with the application firmware.
It can be used to define a unique identifier for the hardware revision or other information which cannot
be overwritten by subsequent updates:
 { "hardware_build": "0xFFFFFFFF" }

Item files which contain the commands to execute (format of item files described below). An optional
comment field is provided:
 { "path": "input/usb_to_device_rate_48k.txt", "comment": "" }

NOTE: Because the generator is a Python script, the paths uses forward slashes irrespective of
platform.

ITEM FILES
The item files contain the commands used to configure the system. The commands are simply added
to the file in the same format as the command line control utility. For clarity, multiple item files can be
included in the .json definition, each specifying a sub-set of commands relating to a particular function
or aspect. Example item files for common configurations are provided in the data-
partition/input directory of the release package. For example, the agc_bypass.txt item file
bypasses the AGC for both output channels contains the following commands:
SET_ADAPT_CH0_AGC 0
SET_ADAPT_CH1_AGC 0
SET_GAIN_CH0_AGC 1
SET_GAIN_CH1_AGC 1

4.2.2. GENERATING A DATA PARTITION FOR CUSTOM APPLICATIONS

It is recommended that in order to create a custom Data Partition, an existing set of .json and item files
is used as a template and modified as required. The release package contains example .json and item
files for this purpose.

NOTE: The following process requires the use of Python 3. Installation is covered in Required Tools
section.

The required additional control commands should be stored in an appropriately named text file inside
the data-partition/input subdirectory. For example, a file named aec_bypass.txt could be
added containing the collected commands:
SET_BYPASS_AEC 1

NOTE: Only commands which are required to be set with non-default values need to be included in
the item file list.
These text files are then included in the custom JSON description.
In the above example, the aec_bypass.txt is added to to a JSON description, bypass_AEC.json
as shown below:
 ...
 "item_files": [

 ...

 {
 "path": "input/aec_bypass.txt",
 "comment": ""
 }
 ...
]
 ...

NOTE: The execution order of the commands and input files can affect the behaviour of the device.
Commands to configure USB and I2S should be added at the beginning of the data image.

 30

Finally, to generate the custom data partition, the command below should be run from the data-
partition directory:
python3 xvf3510_data_partition_generator.py <build_type>.json

The generator script produces two data image files; one for factory programming and one for device
upgrade in a directory named output.
For the above example these files will be called:
data_partition_factory_<build_type>.bin
and
data_partition_upgrade_<build_type>.bin.
These two binary files can be used to factory program or upgrade as described in Updating the
firmware and Generation and application of Upgrade Image and Data Partition sections respectively.
A .JSON file is also produced for debugging purposes.

4.2.3. SERIAL NUMBER

The XVF3510 allows a 24 ASCII character long serial number to be stored in the external flash memory.
This can be accessed using the VocalFusion Control application using the following commands
(XVF3510-INT shown for example). To write to the serial number register use:
vfctrl_i2c SET_SERIAL_NUMBER "DEADBEEF"

and to read use:
vfctrl_i2c GET_SERIAL_NUMBER

USB DEVICE ENUMERATION (XVF3510-UA ONLY)
The XVF3510-UA additionally allows the Serial Number to be copied into the iSerialNumber field of
the USB descriptor. As the host reads the USB descriptor on enumeration the command to copy the
serial number must be present in the Data Partition. To illustrate this process the following commands
must be incorporated into a Data Partition in the specified order (example assumes SERIAL_NUMBER
field is already populated).
To set the USB configuration to use the serial number in the descriptor add the following lines, in this
order, to the Data Partition:
SET_USB_SERIAL_NUMBER 1

To set the USB configuration to start enumeration:
SET_USB_START_STATUS 1

4.3. INTERFACES, AUDIO ROUTING AND FILTERING

The Following section describes, the interfaces, audio routing and filtering features of the
XVF3510. Each section can be referred to in isolation, and describes all aspects relating to that
feature.

4.3.1. USB INTERFACE

The following section details aspects that relate to the USB interface configuration and usage. This
section only pertains to the XVF3510-UA variant of the processor.
The USB interface provides the host three end points:

} Adaptive USB Audio Class 1.0 endpoint for the transfer of Far-field voice to the host and
AEC reference audio from the host.

} Vendor Specific Control allowing the host to control and parameterise the processor.
} Human Interface Device (HID) interrupt endpoint to signal the detection of events which

have occurred on the GPIOs.

 31

The USB Audio interface supports class compliant volume controls on both the input (processed
microphone from XVF3510) and output (AEC reference) interfaces. These controls are accessed via
the host OS audio control panels. They are initialised to 100% (0dB attenuation) on boot and this is the
recommended setting for normal device operation.
By default the device will enumerate with the VID and PID shown below, but these can be configured
using the Data Partition.
Table 4-1 Default USB Identification

USB IDENTIFICATION VALUE

Vendor Identification (VID) 0x20B1

Product Identification (PID) 0x0014

The following section describes the parameters available to configure the USB interface behaviour.

USB CONFIGURATION
Due to the nature of the USB enumeration process, USB setup must be done using a Data Partition so
that the configuration is complete prior to enumeration. The following table summarises the USB
interface parameters which can be configured.

Table 4-2 USB configuration parameters

COMMAND TYPE ARGUMENTS DEFINITION

SET_USB_VENDOR_ID
GET_USB_VENDOR_ID uint32 1 Set USB Vendor ID. See notes A, B.

SET_USB_PRODUCT_ID
GET_USB_PRODUCT_ID uint32 1 Set USB Product ID. See notes A, B.

SET_USB_BCD_DEVICE
GET_USB_BCD_DEVICE uint32 1 Set USB Device Release Number (bcdDevice). See notes A,

B.

SET_USB_VENDOR_STRING
GET_USB_VENDOR_STRING uint8 25 Set USB Vendor string. See notes A, B.

SET_USB_PRODUCT_STRING
GET_USB_PRODUCT_STRING uint8 25 Set USB Product string. See notes A, B.

SET_USB_SERIAL_NUMBER
GET_USB_SERIAL_NUMBER uint32 1

Write only register, setting the behaviour of iSerialNumber
field in USB descriptor (See notes A, B.):
1 - Load from Flash Serial Number
0 - Default to 0.

SET_USB_TO_DEVICE_RATE
GET_USB_TO_DEVICE_RATE uint32 1 Set sampling frequency of USB reference from USB host.

Default is 48000 samples/sec. See notes A, B.

SET_DEVICE_TO_USB_RATE
GET_DEVICE_TO_USB_RATE uint32 1 Set sampling frequency of audio output to USB host. Default

device_to_usb_rate is 48000 samples/sec. See notes A, B.

SET_USB_TO_DEVICE_BIT_RES
GET_USB_TO_DEVICE_BIT_RES uint32 1 Set bit depth of USB reference from USB host. Default

usb_to_device_bit_res is 16 bits. See notes A, B.

SET_DEVICE_TO_USB_BIT_RES
GET_DEVICE_TO_USB_BIT_RES uint32 1 Set bit depth of audio output to USB host. Default

device_to_usb_bit_res is 16 bits. See notes A, B.

SET_USB_START_STATUS
GET_USB_START_STATUS uint8 1 Start USB. Set as 1 as the last USB item in Data Partition.

See notes A.

A: Command supported for Data Partition use only
B: Command must occur before SET_USB_START_STATUS 1

 32

USB HID INTERFACE
A Human Interface Device (HID) is an electronic device with an interface which a human can use for
control. Examples include a Personal Computer with a keyboard and mouse or a consumer appliance
with control knobs, push buttons or a voice interface.
The XVF3510-UA uses the HID interface to inform the host system of events which have occurred on
the General Purpose Inputs (GPI). The following section describes the setup of the GPI HID triggers.

HID REPORT GENERATION
The XVF3510 is able to send HID reports when an interrupt (logic edge transition event) on a GPI pin
has been received. When interrupts are enabled using SET_GPI_INT_CONFIG, the interrupt bit is
automatically serviced by the HID report generator. If an interrupt has occurred, then the sticky bit is
immediately cleared and an HID report is generated. The HID features are described below:

} HID report for the assertion of GPI pin (positive edge) and report for the de-assertion
(negative edge)

} The HID report type is generated with one of the following standard USB HID keycodes:

- GUI Application Control Search (0x221)
- GUI Application Control Stop (0x226)
- Keyboard F23 (0x72)
- Keyboard F24 (0x73)

} When no event has occurred, depending on “set idle” configuration by the host, it will
either reply with a de-assert report (default) or NAK (set to idle by the host)

NOTE: HID idle behaviour is platform-specific and rarely the high-level application code will have any
control over the settings. Linux, for example, typically silences the devices by issuing an indefinite idle
(NAK report if no change). Other platforms such as MacOS, on the other hand, leave the device
verbose by not issuing an idle (report always sent).

The HID function requires that a GPI pin is configured to generate interrupts on both edges.
The HID Report Descriptor used in XVF3510-UA translates the GPI pin interrupt into a HID Report
asserting one of the predefined usages.
The HID Report has the format:

BIT 7 6 5 4 3 2 1 0
 F24 F23 AC Stop AC Search Reserved

The corresponding bit equals 1 when a positive edge interrupt has been detected and zero where a
negative edge interrupt has occurred. In order to configure the GPI pin that triggers the HID report,
the SET_GPI_INT_CONFIG command is used.
For example, the following command configures GPI pin 0 to generate interrupts on both edges, which
enables the HID report logic:
vfctrl_usb SET_GPI_INT_CONFIG 0 0 3

The first argument is a reserved value and should be set to 0. The second argument makes the
command target pin IP_0. The third argument selects both edges for the interrupt. To make the device
respond to the falling edge only with the value 1 and rising edge only with the value 2.

4.3.2. I2C SLAVE CONTROL INTERFACE (XVF3510-INT ONLY)

The XVF3510-INT implements an I2C slave interface for Control and Setup of the device. The interface
conforms to the following specifications.

SPECIFICATION VALUE

Maximum I2C operation speed 100kbps

I2C Slave Address 0x2C

 33

4.3.3. GENERAL PURPOSE INPUT AND OUTPUT AND PERIPHERAL BRIDGING

The XVF3510 supports I/O expansion and protocol bridging over USB and I2C for the XVF3510-UA
and XVF3510-INT respectively. This allows peripheral devices such as audio hardware connected to
XVF3510 to be configured and monitored by the host.

Figure 4-2 Device GPIO interfaces

} Four GPI channels (pins)

- Direct read of port value
- Rising, falling or Both edge capture with “sticky” bit which is cleared on read
- Mode configurable per pin

} Four GPO channels (pins)

- Direct write of entire port or pin
- Active high or Active low
- 500Hz PWM configurable between 0 and 100% duty
- Blinking control supporting a sequence of 32, 100ms states

} SPI Master

- 1Mbps SPI clock
- Up to 128 Bytes SPI write
- Up to 56 Bytes SPI read

} I2C Master (XVF3510-UA only)

- 100kbps SCL clock speed
- Register read/write (byte)
- Up to 56 byte I2C read/write

The following sections describe the configuration and usage of each peripheral interface.

 34

4.3.4. GPIO

There are four general input and four general output pins provided on the XVF3510.

Table 4-3 GPIO pin table

NAME DESCRIPTION I/O

IP_0 General purpose input I

IP_1 General purpose input I

IP_2 General purpose input I

IP_3 General purpose input I

OP_0 General purpose output O

OP_1 General purpose output O

OP_2 General purpose output O

OP_3 General purpose output O

GENERAL PURPOSE INPUTS
The following commands are available to read and control GPIs. Note that interrupt registers are set
to 1 when an edge has been detected and 0 when no event has occurred. All interrupt registers are
initialised to 0 on boot.
IP_0 is special in that, when interrupts are enabled, they are automatically serviced inside the chip
and an HID report is generated over USB accordingly. See the USB HID section for further details.
The following parameters are available to interrogate and configure the GPI behaviour.

Table 4-4 General Purpose Input commands

COMMAND TYPE DIR ARGS DESCRIPTION

GET_GPI uint32 READ 1 Read current level of all pins of the selected GPIO port. Pin 0
corresponds to the LSB of the port.

GET_GPI_INT_PENDING_PIN uint32 READ 1
Read whether interrupt was triggered for selected pin. The
interrupt pending register for the selected pin is cleared by
this command.

GET_GPI_INT_PENDING_PORT uint32 READ 1
Read whether interrupt was triggered for all pins on selected
port. The interrupt pending register for the whole port is
cleared by this command.

SET_GPI_PIN_ACTIVE_LEVEL uint8 WRITE 3
Set the active level for a specific GPI pin. Arguments are <Port
Index> <Pin Index> <0: active low, 1: active high>. By default,
all GPI pins are set to active high.

SET_GPI_INT_CONFIG uint8 WRITE 3
Sets the interrupt config
for a specific pin. Arguments are <Port Index> <Pin Index>
<Interrupt type 0=None, 1=Falling, 2=Rising, 3=Both>.

SET_GPI_READ_HEADER uint8 WRITE 2 Sets the selected port and pin for the next GPIO read.
Arguments are <Port Index> <Pin Index>.

GET_GPI_READ_HEADER uint8 READ 2 Gets the currently selected port and pin set by a previous
SET_GPI_READ_HEADER command.

SET_KWD_INTERRUPT_PIN uint8 WRITE 1 Set gpi pin index to receive kwd interrupt on

 35

COMMAND TYPE DIR ARGS DESCRIPTION

GET_KWD_INTERRUPT_PIN uint8 READ 1 Read gpi pin index to receive kwd interrupt on

EXAMPLE: READING A GPIO PIN
For example, a read operation on XVF3510-UA is illustrated below. To read the level of pin 2 of the
input port first set the port index (always 0 for XVF3510) and the pin index (2 in this case):
vfctrl_usb SET_GPI_READ_HEADER 0 2

Next perform the read:
vfctrl_usb GET_GPI
GET_GPI: 13

The returned value, 13 (b‘1101), means pin index 1 (IP_1) is logic low and the other pins 0, 2 and 3
logic high.

EXAMPLE: CONFIGURING AND CAPTURING A FALLING AND RISING EDGE INTERRUPT
An example of configuration of a GPIs to capture edge events is discussed below (XVF3510-INT used
for the example). First, configure IP_1 to trigger a falling edge interrupt and IP_2 to trigger a rising
edge interrupt as shown:
vfctrl_i2c SET_GPI_INT_CONFIG 0 1 1
vfctrl_i2c SET_GPI_INT_CONFIG 0 2 2

For the example, IP_1 & IP_2 are connected to the same source, which is driving low. To check the
ports for interrupts use the following commands:
vfctrl_i2c SET_GPI_READ_HEADER 0 0
vfctrl_i2c GET_GPI_INT_PENDING_PORT
> GET_GPI_INT_PENDING_PORT: 0

NOTE: The pin index specified in SET_GPI_READ_HEADER is ignored by
GET_GPI_INT_PENDING_PORT
The result returned by the GET_GPI_INT_PENDING_PORT indicates that no transitions have occurred.
Continuing the example, assume now that IP_1 & IP_2 are asserted high, and the port queried again:
vfctrl_i2c GET_GPI_INT_PENDING_PORT
> GET_GPI_INT_PENDING_PORT: 2

The result 2 (b‘0010) shows that IP_2 has triggered on a rising edge. Rechecking the port status shows
this event has been cleared.
vfctrl_i2c GET_GPI_INT_PENDING_PORT
> GET_GPI_INT_PENDING_PORT: 0

When IP_1 and IP_2 are driven low and the port status queried again:
vfctrl_i2c GET_GPI_INT_PENDING_PORT
> GET_GPI_INT_PENDING_PORT : 1

result (b‘0001) shows that IP_1 has seen a falling edge interrupt.

 36

GENERAL PURPOSE OUTPUTS
The following commands are available to write and control GPOs:

Table 4-5 General Purpose Output commands

COMMAND TYPE DIRECTION ARGS DESCRIPTION

SET_GPO_PORT uint32 WRITE 2 Write a value to all pins of a GPIO port. Arguments are
<Port Index> <Value>.

SET_GPO_PIN uint8 WRITE 3 Write to a specific GPIO pin. Arguments are <Port
Index> <Pin Index> <Value>.

SET_GPO_PIN_ACTIVE_LEVEL uint8 WRITE 3
Set the active level for a specific GPO pin. Arguments
are <Port Index> <Pin Index> <0: active low, 1: active
high>. By default, all GPO pins are active high

SET_GPO_PWM_DUTY uint8 WRITE 3
Set the PWM duty for a specific pin. Value given as an
integer percentage. Arguments are <Port Index> <Pin
Index> <Duty in percent>.

SET_GPO_FLASHING uint32 WRITE 3
Set the serial flash mask for a specific pin. Each bit in
the mask describes the GPO state for a 100ms interval.
Arguments are <Port Index> <Pin Index> <Flash
mask>.

NOTE: All GPOs have a weak pull-down (~30kΩ) during reset and initialised to logic low on device
boot and will always drive the pin thereafter.
To illustrate usage of the GPOs the following section considers four common examples. Writing to a
GPO pin, configuring a PWM output, generating a blink sequence and driving a three colour (RGB)
LED.
The following commands toggle OP_2 high then low (XVF3510-UA shown for example):
vfctrl_usb SET_GPO_PIN 0 2 1
vfctrl_usb SET_GPO_PIN 0 2 0

To set all GPOs high and then low:
vfctrl_usb SET_GPO_PORT 0 15
vfctrl_usb SET_GPO_PORT 0 0

The PWM runs at a fixed 500Hz frequency designed to minimise visible flicker when dimming LEDs
and supports 100 discrete duty settings to permit gradual off to fully-on control.
The following commands illustrate setting individual PWM frequencies on each output by setting GPO
pins 0, 1, 2 and 3 to output 25%, 50%, 75% and 100% duty cycles respectively:
vfctrl_usb SET_GPO_PWM_DUTY 0 0 25
vfctrl_usb SET_GPO_PWM_DUTY 0 1 50
vfctrl_usb SET_GPO_PWM_DUTY 0 2 75
vfctrl_usb SET_GPO_PWM_DUTY 0 3 100

Setting a pin duty to 100% is the same as setting that pin to high.
Each GPO is driven from the LSB of an internal 32bit register, which is rotated by one bit every 100mS.

 37

The figure below shows how the blinking sequence works:

Figure 4-3 Use of 32 bit word is used to define the blinking function of GPO

The following commands configure the following:
} GPO pin 0 blinking, ON for 1.6 seconds, then OFF for 1.6 seconds, i.e. a period of 3.2

seconds;
} GPO pin 1 blinking, ON for 0.8 seconds, then OFF for 0.8 seconds, i.e. a period of 1.6

seconds;
} GPO pin 2 blinking, ON for 0.1 seconds, then OFF for 0.1 seconds, i.e. a period of 0.2

seconds;
vfctrl_usb SET_GPO_FLASHING 0 0 4294901760 # equivalent to pattern: xFFFF0000
vfctrl_usb SET_GPO_FLASHING 0 1 4042322160 # equivalent to pattern: xFF00FF00
vfctrl_usb SET_GPO_FLASHING 0 2 2863311530 # equivalent to pattern: xAAAAAAAA

Note that a GPO pin can be set to both a PWM duty cycle, and to flashing by issuing both a
GPO_SET_PWM_DUTY instruction and a SET_GPO_FLASHING instruction for the same port and pin.
Where RGB LEDs are connected to three GPO pins (0 = Red, 1 = Green, 2 = Blue) automated colour
sequencing can be programmed. For example, to colour cycle between Red-Yellow-Green-Cyan-Blue
every 3.2 seconds:
vfctrl_usb SET_GPO_FLASHING 0 0 65535 # 0 x0000FFFF
vfctrl_usb SET_GPO_FLASHING 0 1 16776960 # 0 x00FFFF00
vfctrl_usb SET_GPO_FLASHING 0 2 4294901760 # 0 xFFFF0000

4.3.5. I2C MASTER PERIPHERAL INTERFACE (XVF3510-UA ONLY)

The XVF3510-UA variant provides an I2C master interface which can be used as:
} a bridge from the USB interface, i.e. VFCTRL_USB commands can be used from the host

to read and write devices connected to the I2C Peripheral Port;
} a mechanism to initialise devices connected to the I2C Peripheral Port by incorporating

commands into the data partition (in the external flash), which are executed at boot time.
The interface supports:

} 100kbps fixed speed
} 7bit addressing only
} Byte I2C register read/writes are supported.

 38

The following table shows the commands for the configuration of the I2C Master interface:

Table 4-6 I2C peripheral interface commands

COMMAND TYPE DIRECTION NUM OF
ARGS

NUMBER
OF

RETURNED
VALUES

DEFINITION

SET_I2C_READ_HEADER uint8 WRITE 3 0

Set the parameters to be used
by the next GET_I2C, or
GET_I2C_WITH_REG command.
Arguments:
1: The 7-bit I2C slave device
address.
2: The register address within
the device.
3: The number of bytes to read.

GET_I2C_READ_HEADER uint8 READ 0 3

Get the parameters to be used
by the next GET_I2C, or
GET_I2C_WITH_REG command.
Returned values:
1: The 7-bit I2C slave device
address.
2: The register address within
the device.
3: The number of bytes to read.

GET_I2C uint8 READ 0 56

Read from an I2C device
defined by the
SET_I2C_READ_HEADER
command.
Returned values:
1 to 56: The number of bytes
read as defined by the
SET_I2C_READ_HEADER
command followed by additional
undefined values. The number
of bytes read from the I2C
device when executing GET_I2C
is set using
SET_I2C_READ_HEADER

GET_I2C_WITH_REG uint8 READ 0 56

Read from the register of an I2C
device as defined by the
SET_I2C_READ_HEADER
command.
Returned values:
1 to 56: The number of bytes
read as defined by the
SET_I2C_READ_HEADER
command followed by additional
undefined values. The number
of bytes read from the I2C
device when executing GET_I2C
is set using
SET_I2C_READ_HEADER

SET_I2C uint8 WRITE 56 0

Write to an I2C slave device.
Arguments:
1: The 7-bit I2C slave device
address.
2: The number of data bytes to
write (n).
3 to 56: Data bytes. All 54 values
must be given but only n will be
sent.

 39

COMMAND TYPE DIRECTION NUM OF
ARGS

NUMBER
OF

RETURNED
VALUES

DEFINITION

SET_I2C_WITH_REG uint8 WRITE 56 0

Write to a specific register of an
I2C slave device.
Arguments:
1: The 7-bit I2C slave device
address.
2: The register address within
the device.
3: The number of data bytes to
write (n).
4 to 56: Data bytes. All 53 values
must be given but only n will be
sent.

Figure 4-4 I2C protocol for register reads

Figure 4-5 I2C protocol for register writes

} raw I2C read/writes may be performed.

Figure 4-6 I2C protocol for raw reads and writes

USING I2C MASTER TO WRITE TO A DEVICE
Typically byte register read/writes are used to configure external I2C controlled hardware.
As an example, assume there is a device connected at address 0x40 (64) with three, single byte,
registers. The following commands will write 77 to register 0, 48 to register 1 and 33 to register 2.

 40

vfctrl_usb SET_I2C_WITH_REG 64 0 1 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0
vfctrl_usb SET_I2C_WITH_REG 64 1 1 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0
vfctrl_usb SET_I2C_WITH_REG 64 2 1 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0

NOTE: The control protocol does not support variadic (variable number of) arguments. Hence, even
when writing a single byte, the full number of arguments must bepassed. Unwritten values are ignored.

USING THE I2C MASTER TO READ FROM A DEVICE
To verify the previous I2C register write to register number 0 at address
0x40 (64), an I2C register read can be performed as follows:
vfctrl_usb SET_I2C_READ_HEADER 64 0 1
vfctrl_usb GET_I2C_WITH_REG
> 77 0
 0

The byte read is the first of the 56 return values, which in this case, is 77. The following 55 values are
undefined since the command only performed a read of 1 register.

4.3.6. SPI MASTER

The XVF3510_UA and XVF3510-INT variants provide an SPI master interface which can be used as:
} a bridge from the USB interface, i.e. VFCTRL_USB commands can be used from the host

to read and write devices connected to the SPI Peripheral Port; and
} a mechanism to initialise devices connected to the SPI Peripheral Port by incorporating

commands into the data partition (in the external flash), which are executed at boot time.

NOTE: From Version 4.1 the SPI Master peripheral interface is not available on XVF3510_UA and
XVF3510_INT devices that have been SPI booted to prevent possible bus contention issues

The SPI master peripheral supports the following fixed specifications:
} Single chip select line
} 1Mbps fixed clock speed
} Supports either reads or writes. Duplex read/writes are not supported.
} Most significant bit transferred first
} Mode 0 transfer (CPOL = 0, CPHA = 0)

NOTE: The chip select is asserted a minimum of before 20ns the start of the transfer and de-asserted
a minimum of 20ns after the transfer ends.

The SPI Master is controlled using the following commands.

Table 4-7 SPI peripheral interface commands

COMMAND TYPE DIR ARGS DESCRIPTION

GET_SPI uint8 READ 56 Gets the contents of the SPI read buffer.

GET_SPI_READ_HEADER uint8 READ 2 Get the address and count of next SPI read.

SET_SPI_PUSH uint8 WRITE 56 Push SPI command data onto the execution queue.

SET_SPI_PUSH_AND_EXEC uint8 WRITE 56 Push SPI command data and execute the command from the
stack. Data will then be sent to SPI device.

SET_SPI_READ_HEADER uint8 WRITE 2 Set address and count of next SPI read.

 41

Reads of up to 56 Bytes at a time may be performed but writes of 128 Bytes at a time can be made by
pushing multiple commands into a command stack and executing them in one go. The transaction is
performed within a single chip select assertion.

Figure 4-7 SPI peripheral, read sequence

Figure 4-8 SPI peripheral, write sequence

The control protocol does not support variadic (variable number of) arguments. Hence, even when
writing a single byte, the total number of arguments passed must be the maximum. Unwritten values
are ignored.
See below examples.
The following example writes one byte of data (with value 122) to a control register as address 6.
vfctrl_i2c SET_SPI_PUSH_AND_EXEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0
 0 0 6 1 122

NOTE: All numbers are decimal. It is necessary to pad the payload to 56 bytes, which includes the
address, length and data values. This is a requirement of the VFCTRL tool, the SPI interface itself will
only transmit the valid data.

Transmitting more than 54 bytes of data is possible using the SET_SPI_PUSH command to queue up
data, using multiple commands before the push is executed. The following example writes values 0 to
69 to address 100 (70 bytes in total) using command to push 56 data values into the queue, followed
by a push the remaining 14 data words and then execute the transfer:
vfctrl_i2c SET_SPI_PUSH 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36
35
 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
 8 7 6 5 4 3 2 1 0

vfctrl_i2c SET_SPI_PUSH_AND_EXEC 0
0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56

 42

To read one byte at address 6, which contains the value 122, we can do the following:
vfctrl SET_SPI_READ_HEADER 6 1
vfctrl GET_SPI
> GET_SPI: 122 0
-> 0

To read 16 bytes from address 0, which all contain the value 33, we can do the following:
vfctrl SET_SPI_READ_HEADER 0 16
vfctrl GET_SPI
> GET_SPI: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 0 0 0 0
-> 0
-> 0

4.3.7. SIGNAL FLOW AND PROCESSING

Many of the parameters and functions of the XVF3510 may be controlled via the control interface. This
control extends to being able to configure signal routing through the pipeline itself, providing flexibility
useful in:

} Hardware testing of mics by monitoring the raw mic signal.
} Improving pipeline performance by filtering known noise sources at the raw mic input.
} Monitoring and debugging of reference signals and mic signals during development.
} Compensating for gain offset in reference signal.
} Supporting specific audio connectivity requirements such as obtaining the reference

signal from I2S.
} Inserting audio filtering where a speaker is connected downstream of the XVF3510 via I2S.

The blocks supported are as follows:
} Signal Multiplexers. These allow dynamic selection (switching) of signals. The signals

available depend on the multiplexer position.
} Gain Blocks. These are blocks that apply a variable bit shift (left or right) and, in the case

of left shift, saturate in the case of overflow. Because they are shifters, the gain applied is
a power of two.

} Filter Blocks. The filter blocks consist of two cascaded biquad units. Each of the five
coefficients per stage is directly manipulated via the control utility.

 43

The arrangement of the blocks, with respect to the device Input & Output and the XVF3510 audio
processing pipeline, is shown in Figure 4-9 below:

Figure 4-9 XVF3510 input, output and audio signal routing

The commands to control the audio multiplexes (Mux) blocks and detailed in Table 4-8 below and the
source and destination index numbers are listed in Table 4-10 and Table 4-9 respectively

SIGNAL ROUTING AND SCALING
The following controls are provided for configuring the signal control blocks.

Table 4-8 I/O Mapping Commands

COMMAND TYPE ARGS DEFINITION

SET_IO_MAP uint8 2
Configures the two input switches and four output switches. See
Destination and Source index table for valid argument options.
arg1 <Destination Index>
arg2 <Source Index>

SET_OUTPUT_SHIFT int32 2
Sets the gain for each mux block. Select mux block Destination Index
followed by shift (+ve is left, -ve is right shift)
arg1 <Destination Index>
arg2 <shift value>

GET_IO_MAP_AND_SHIFT uint32 6 x 3 Get all 18 IO_MAP and OUTPUT_SHIFT values for all Destinations.

SET_MIC_SHIFT_SATURATE
GET_MIC_SHIFT_SATURATE uint32 2

Sets the gain on the raw mic signals before entering the pipeline.
arg1 <shift value (left shift)>
arg2 <saturate, enable if =1>

 44

Where the Destination channels available to be mapped are referenced as follows:

Table 4-9 I/O Mapping Destination Indexes

CHANNEL (DESTINATION) VALUE DEFINITION

USB_FROM_DEVICE_0 0 USB channel 0 output from device to host

USB_FROM_DEVICE_1 1 USB channel 1 output from device to host

I2S_FROM_DEVICE_0 2 I2S channel 0 output from device

I2S_FROM_DEVICE_1 3 I2S channel 1 output from device

REF_TO_PIPELINE_0 4 reference channel 0 going into the pipeline

REF_TO_PIPELINE_1 5 reference channel 1 going into the pipeline

Sources available to be mapped to destination are referenced as follows:

Table 4-10 I/O Mapping Source Indexes

CHANNEL (SOURCE) VALUE DEFINITION

MUTE 0 Zeros are sent to the destination if this value is selected,
which mutes the channel

USB_TO_DEVICE_AVERAGE 1 Average of USB input from host to device.

USB_TO_DEVICE_DIFFERENCE 2 Half of the difference between ch0 and ch1 of USB input from host to device.

I2S_TO_DEVICE_AVERAGE 3 Average of I2S input to device.

I2S_TO_DEVICE_DIFFERENCE 4 Half of the difference between ch0 and ch1 of I2S input to device.

PIPELINE_OUT_0 5 Pipeline output channel 0

PIPELINE_OUT_1 6 Pipeline output channel 1

USB_TO_DEVICE_0 7 USB input channel 0 from host to device

USB_TO_DEVICE_1 8 USB input channel 1 from host to device

I2S_TO_DEVICE_0 9 I2S input channel 0 to device

I2S_TO_DEVICE_1 10 I2S input channel 1 to device

MIC_IN_0 11 Ch0 Microphone input seen by the pipeline

MIC_IN_1 12 Ch1 Microphone input seen by the pipeline

PACKED_PIPELINE_OUTPUT 13 pack 16kHz pipeline output on 48kHz output (See Appendix J: Capturing
packed samples for system integration for further information)

PACKED_MIC 14 pack 16kHz mic input to pipeline on 48kHz output (See Appendix J):

PACKED_REF 15 pack 16kHz reference input to pipeline on 48kHz output (See Appendix J)

PACKED_ALL 16
pack 1 channel of 16kHz mic, reference input and pipeline. When this option
is used, the other channel of the same output also gets PACKED_ALL set in
its IO map. (See Appendix J: Capturing packed samples for system
integration for further information)

 45

NOTE: The MIC_IN_0 and MIC_IN_1 signals are at 16kHz. If they are routed to a 48kHz output they
will be sample repeated three times. No antialiasing filter is applied.
The following section illustrates how to use the IO mapping and scaling commands.
Using the SET_IO_MAP command, the user can choose the sources that get routed to the following 3
destinations -

} the USB output from device to host
} the I2S output from the device
} the reference going into the device

For instance, to route I2S channel 0 (= 9 as shown in the Source table) input to the device to USB
channel 1 output from the device (= 1 as shown in the destination table), the command is:
vfctrl_usb SET_IO_MAP 1 9

where the first argument “1” refers to USB_FROM_DEVICE_1 as shown in the destination table and the
second argument “9” refers to I2S_TO_DEVICE_0 in the source table.
Signal routing is also useful for hardware debugging of microphone or reference signal connection.
As an example, the following command routes USB reference channel 0 from host to the USB audio
output channel 0 of XVF3510:
vfctrl_usb SET_IO_MAP 0 7

A loopback of reference signal input XVF3510 and its audio output is formed. By playing back signal,
e.g. a sine wave as the reference signal output from host, the user can verify if the signal is being
received properly by XVF3510 through its audio output. If the audio signal recorded at host is different
from the reference output, the user may check if the problem is caused by hardware connection failure
or wrong data format.
Signal routing can also be used for debugging microphone signal:
vfctrl_usb SET_IO_MAP 1 12

The above command routes microphone channel 1 as the direct signal to XVF3510’s USB audio
output. Microphone signals can the be verified by recording XVF3510’s audio output.
For XVF3510-UA, its I2S master interface can be used for sending out different kind of signal shown in
the source channel table while having USB outputs of processed audio. For example, the following
command configures to send channels of mic, reference and pipeline outputs in 16kHz sampling
frequency packed to 48kHz I2S output:
vfctrl_usb SET_IO_MAP 2 16
vfctrl_usb SET_IO_MAP 3 16

By using Raspberry Pi with I2S slave interface configured, the user can then capture synchronized
signals of mic, reference and pipeline output. Observing these signals can be very useful for
debugging. The packed signal can be unpacked to mic, reference and pipeline signal with 2 channels
in each of them by using a Python script provided in the Release Package.
The SET_OUTPUT_SHIFT command can be used to specify a bit shift that is applied to all samples
of a given target. For example, specifying:
vfctrl_usb SET_OUTPUT_SHIFT 2 4

applies a left shift of 4 bits on all samples output from the device on I2S channel 0 as 24=16x of gain.
A negative shift value would imply a right bit shift for attenuation.
The GET_IO_MAP_AND_SHIFT command displays the IO mapping and the shift values for all targets.

 46

Executing a GET_IO_MAP_AND_SHIFT command without having set any mapping or shifts explicitly
shows the default mapping that is configured in firmware.
vfctrl_usb GET_IO_MAP_AND_SHIFT
GET_IO_MAP_AND_SHIFT:
target: USB_FROM_DEVICE_0, source: PIPELINE_OUT_0 output shift: NONE
target: USB_FROM_DEVICE_1, source: PIPELINE_OUT_1 output shift: NONE
target: I2S_FROM_DEVICE_0, source: PIPELINE_OUT_0 output shift: NONE
target: I2S_FROM_DEVICE_1, source: FAR_END_IN_0 output shift: NONE
target: REF_TO_PIPELINE_0, source: USB_TO_DEVICE_0 output shift: NONE
target: REF_TO_PIPELINE_1, source: USB_TO_DEVICE_1 output shift: NONE

GENERAL PURPOSE FILTER
The General Purpose filter blocks each comprise of two cascade biquad filters permitting configuration
as bandpass, notch, low-pass, high-pass filters etc. By default, all filters are disabled (bypassed).
NOTE: A maximum of two output filters may be enabled simultaneously. Eg. Two channels of USB
filtering or one I2S and one USB output. Exceeding this may cause audio glitching.
There is no restriction on input filters (mic and reference filters).
The filter coefficients are accepted in a floating-point format in a1, a2, b0, b1, b2 order directly from
filter design tools such as https://arachnoid.com/BiQuadDesigner/index.html.
Support for the raw 32bit integer write/read is offered which directly accesses the internal
representation. When using the raw control method, coefficients should be converted to Q28.4 format
first and a1 and a2 need to be negated. See configuration parameters for more information.
The sample rate for filters on the input to the pipeline are always 16kHz whereas the output filters
match the selected rate which may be either 16kHz or 48kHz, depending on system configuration.
Ensure that the filter coefficients have been designed with the correct rate.
Note that, although potential numerical overflows are handled as a saturation, it is up to the designer
to ensure no saturation occurs from the coefficients chosen to avoid non-linear behaviour of the filter.
The implementation offers three bits of headroom (Q28.4) which is more than sufficient for most filters.
The coefficients are cleared to zero on boot.
The following table describes the commands for the configuration of the filters.

Table 4-11 Filter configuration parameters

COMMAND TYPE ARGUMENTS DEFINITION

SET_FILTER_INDEX uint8 1
Used as an index to point to which filter block that will be
manipulated. output_filter_map_t below defines the filter block
IDs.

GET_FILTER_INDEX uint8 1 Retrieve the current filter index.

SET_FILTER_BYPASS uint8 1 Bypass (1) means filter pointed to by the index is not enabled
(default), 0 means enable the filter.

GET_FILTER_BYPASS uint8 1 Retrieve the bypass status.

SET_FILTER_COEFF float 10 (5x2)
Set 5 x 2 biquad coefficients in a floating-point format in the order
a1, a2, b0, b1, b2. Coefficient a0 is assumed to be 1.0. If it is not,
divide all coefficients by a0.

GET_FILTER_COEFF float 10 (5x2) Retrieve the floating-point representation of the coefficients in the
order a1, a2, b0, b1, b2.

SET_FILTER_COEFF_RAW int32 10 (5x2)
Set 5 x 2 biquad coefficients in Q28.4 format for the filter pointed
to by the index. See note above in Filter Blocks section about the
format.

GET_FILTER_COEFF_RAW int32 10 (5x2) Retrieve the Q28.4 representation of the coefficients. See note
above in Filter Blocks section about the format.

 47

Filter output indexes available to be used with filter setting commands (output_filter_map_t):

CHANNEL VALUE DEFINITION

FILTER_USB_FROM_DEVICE_0 0 USB channel 0 from device to host (Left)

FILTER_USB_FROM_DEVICE_1 1 USB channel 1 from device to host (Right)

FILTER_I2S_FROM_DEVICE_0 2 I2S channel 0 from device (Left)

FILTER_I2S_FROM_DEVICE_1 3 I2S channel 1 output from device (Right)

FILTER_MIC_TO_PIPELINE_0 4 16kHz mic channel 0 going into the pipeline

FILTER_MIC_TO_PIPELINE_1 5 16kHz mic channel 1 going into the pipeline

FILTER_REF_TO_PIPELINE_1 6 16kHz reference channel 0 going into the pipeline (Left)

FILTER_REF_TO_PIPELINE_1 7 16kHz reference channel 1 going into the pipeline (Right)

While setting the index or bypass control will always be safe, there is a small chance that the
coefficients may be partially updated halfway through a filter operation. For this reason, the filter state
is also cleared following updating to ensure that any possibility of instability is reduced. It is up to the
user to ensure that the coefficients provided result in a stable filter configuration.
See Appendix G for a worked example on filter definition.

4.4. FAR-FIELD VOICE PROCESSING

4.4.1. PDM MICROPHONE INTERFACE

The PDM microphone interface converts Pulse Density Modulation (PDM) audio input from the
microphones to Pulse Code Modulation (PCM) format allowing further processing. The PDM
microphone interface consists of the physical pins connecting to the two microphones and a series of
filters resulting in a 16kHz PCM, two-channel output stream suitable for far-field voice processing.
Please refer to the datasheet for the physical and electrical details of the PDM pins.
The processing consists of four filter stages:

} Decimate by 8 FIR filter to 384kHz
} Decimate by 4 FIR filter to 96kHz
} Decimate by 6 FIR filter to 16kHz
} DC Blocking, single-pole IIR filter

Figure 4-10 PDM microphone processing steps

The PDM microphone interface uses 32-bit internal processing to provide very low distortion with a
specification exceeding -110dB THD+N with a 140dB dynamic range.
The frequency response of the FIR filter has a stopband attenuation of at least 70dB with a passband
ripple of less than 0.9dB and a passband of 6.8kHz. The total group delay from pin to the XVF3510
audio pipeline input is 1.125 milliseconds.
A DC blocking filter is placed at the end of the PDM microphone interface pipeline and is tuned to
have a 5Hz -6dB point and removes any DC offset present in the PDM input.
The output from the PDM microphone interface may optionally be shifted or attenuated providing a
‘power of two’ gain control. Saturation may be applied in the case that the gain is greater than one.

 48

By default, the gain block shift is set to zero (a gain of 20 = 1) and this is the recommended setting for
normal use.
The PDM interface control parameters are shown below:

Table 4-12 Microphone commands

COMMAND TYPE VALUE DESCRIPTION NOTE
S

SET_MIC_SHIFT_SATURATE uint32
arg1 <shift value
(left shift)>
arg2 <saturate,
enable if !=0>

Write the gain (power of 2) on the raw mic
signals before entering the audio
pipeline.

GET_MIC_SHIFT_SATURATE uint32 Read the gain (power of 2) on the raw
mic and Saturate Enable signals before
entering the audio pipeline.

4.4.2. AUTOMATIC ECHO CANCELLATION (AEC)
This process uses the stereo audio from the product as a reference signal to model the echo
characteristics between each loudspeaker and microphone, caused by the acoustic environment of
the device and room.
The AEC uses four models to continuously remove echoes in the microphone audio input created in
the room by the loudspeakers. The models continually adapt to the acoustic environment to
accommodate changes in the room created by events such as doors opening or closing and people
moving about.
An illustration of echo paths in two sizes of room are shown below.

Figure 4-11 Echo paths from the speakers to the microphones

 49

After reset, or when echo paths change due to a change in the environment, the AEC will re-converge.
Echo Return Loss Enhancement (ERLE) can be used to indicate the degree of convergence on the
AEC filters as shown below.

Figure 4-12 Settling time of the AEC shown using an ERLE plot

For optimal AEC settling-time performance, the volume of the speakers must be linearly proportional
to the level of the reference audio sent to the XVF3510. If the volume of the speakers change without
the level of the reference changing by the same linear factor, the AEC will respond as if the environment
has changed such that all echo paths have increased/decreased energy, and will therefore incur a
settling time in the AEC.
The Alternative Architecture (described in the Alternative Architecture mode (ALT_ARCH) section)
selectively extends the AEC filters to accommodate highly reverberant environments.
The configuration parameters for the AEC are shown below:

Table 4-13 Useful Automatic Echo Canceller (AEC) commands

COMMAND TYPE VALUE DESCRIPTION NOTES

GET_BYPASS_AEC
SET_BYPASS_AEC uint32

[0,1]
0 = AEC bypass
disabled (default)
1 = AEC bypass
enabled

Get/Set AEC bypass parameter. If set
to one, AEC processing is disabled. A

SET_ADAPTATION_CONFIG_AEC
GET_ADAPTATION_CONFIG_AEC uint32

[0, 1, 2]
0 = Auto adapt
(default)
1 = Force
adaptation ON
2 = Force
adaptation OFF

Sets AEC adaptation configuration. If
AEC is set to bypass then setting the
adaptation config has no effect.

B

GET_ERLE_CH0_AEC float Get AEC ERLE for channel 0

GET_ERLE_CH1_AEC float Get AEC ERLE for channel 1 C

RESET_FILTER_AEC This command resets all AEC filters.

[A] When the Alternative Architecture (ALT_ARCH) mode is enabled (default), AEC bypass state will
be overwritten and so should not be used. The GET command remains functional. For more information
see the Alternative Architecture (ALT_ARCH) section.

 50

[B] If Automatic Delay Estimation is enabled, these parameters will be overwritten and so should not
be used. The GET commands remain functional. For more information see the Automatic Delay
Estimation & Correction (ADEC) section.
[C] When the ALT_ARCH mode is enabled, there is only valid ERLE data available on CH0. In this
mode the GET_ERLE_CH1_AEC will report NaN.

NOTE: The AEC operates on acoustic paths modelled in the AEC tail length. The Automatic Delay
Estimation and Correction module handles delays between microphone and loudspeaker introduced
by the equipment, for instance receiving the reference ahead of it actually being played out of the
loudspeakers.

4.4.3. AUTOMATIC DELAY ESTIMATION & CORRECTION (ADEC)

The ADEC module automatically corrects for possible delay offsets between the reference and the
loudspeakers.
Echo cancellation is an adaptive filtering process which compares the reference audio to that received
from the microphones. It models the reverberant time of a room, i.e. the time it takes for acoustic
reflections to decay to insignificance. This is shown in the figure below (the red “Acoustic echo path
delay”).
The time window modelled by the AEC is finite, and to maximise its performance it is important to
ensure that the reference audio is presented to the AEC time aligned to the audio being reproduced
by the loudspeakers. The diagram below highlights how the reference audio path delay and the audio
reproduction path may be significantly different, therefore requiring additional delay to be inserted into
one of the two paths, correcting this delay difference.

Figure 4-13 ADEC use case diagram

 51

The functional blocks in the ADEC are shown below:

Figure 4-14 ADEC block diagram

Delay corrections may be applied to either microphone or reference path, to cope with reference or
loudspeaker being ahead of the other, accomplished by switching the delay into either the microphone
channel or the reference channel.
Automatic delay estimation is triggered at power-up, or if the host system configuration changes. The
process will not begin until the reference signal is present and has sufficient energy.
The delay estimation process supports two stages:

} Fine delay estimation, during which AEC adaption is paused. Fine delay estimation
searches over a limited delay window to detect small changes in delay. If the delay
correction is not resolved the coarse estimation is triggered.

} Coarse delay estimation, re-purposes the AEC to detect larger delays. During estimation,
the AEC does not perform cancellation. Once the delay is detected, and delay correction
made the AEC restarts and converges based on the delayed signals.

Possible causes that may trigger coarse estimation:
} Device reset (if initial delay estimation is enabled, default: enabled)
} Host changing applications
} Large volume changes between the reference and the loudspeaker play-back
} User equipment changes, such as switching from TV audio output to playing the audio

through a soundbar
Possible causes that may trigger fine estimation:

} Host toggling between audio devices (such as using a voice assistant application and
listening to music at the same time) This is typically only seen in USB configurations

} Host processor performance leading to poor USB buffer management
The characteristics and specification of the ADEC function is shown below:

Table 4-14 ADEC characteristics

NAME VALUE DESCRIPTION

Maximum delay
correction ± 150ms The maximum delay that can be added to either the microphone

channel or the reference channel.

Coarse
estimation time

With good reference SNR:
2-5 seconds

During this time AEC is disabled. Note that estimation will not start
unless reference is available and loudspeakers are playing back.

 52

NAME VALUE DESCRIPTION

Fine estimation
time

<1 second.
If fine-grain estimation fails,
coarse-grain estimation is
triggered.

During this time adaptation in the AEC is disabled. Note that
estimation will not start unless reference is available and loudspeakers
are playing back.

The configuration commands are shown below:

Table 4-15 Automatic Delay Estimator parameters

COMMAND TYPE VALUE DESCRIPTION NOTE
S

GET_DELAY_SAMPLES
SET_DELAY_SAMPLES uint32 [0 .. 2399]

Change the number of samples of input
delay at the sample rate 16kHz.
The delay is applied to either the
reference or the microphone in
put according to the delay direction.
This provides a maximum delay of +/-
150mS.

A

GET_DELAY_DIRECTION
SET_DELAY_DIRECTION uint32

[0,1]
0 - Delay the
reference input (de
fault)
1 - Delay the
microphone input

Select the direction of input delay.
i.e. it is applied to either the microphone
input path or the reference signal path.

A

GET_DELAY_ESTIMATE uint32 [0 .. 7200]

Get an estimate of the number of samples
of delay on the reference input at a
sample rate of 16kHz. This value is valid
only when a coarse-grain delay
estimation is in progress, and is offset by
the maximum length of the delay buffer
(2400 samples). Add 2400 samples to
this value to get the absolute delay
estimate.

SET_ADEC_ENABLED
GET_ADEC_ENABLED uint32

[0, 1]
0 - ADEC disabled
1 - ADEC enabled

Enable automatic coarse-grain delay
control.
If automatic fine-grain delay control is
enabled (SET_LOCKER_ENABLED 1),
this parameter is overridden by a state
machine internal to the firmware.

GET_ADEC_MODE uint32

[0,1]
0 - Normal AEC
mode
1 - delay
estimation in
progress

Get the status of coarse-grain delay
estimation.

SET_MANUAL_ADEC_CYCLE_TRIG
GER uint32

Trigger a delay estimation cycle.
The default behaviour in firmware is to
trigger a coarse-grain delay estimation
cycle when the far end reference is
detected for the first time after device
reset. This is done irrespective of whether
automatic coarse-grain delay control is
enabled or disabled. To disable this initial
delay estimation, set
SET_MANUAL_ADEC_CYCLE_TRIGGER
=0 in the data partition.
For all other times, if coarse-grain delay
estimation is disabled, the
SET_MANUAL_ADEC_CYCLE_TRIGGER
can be used to force a coarse-grain
delay estimation cycle.

 53

COMMAND TYPE VALUE DESCRIPTION NOTE
S

GET_AEC_PEAK_TO_AVERAGE_RA
TIO float

Get current AEC filter coefficients peak to
average ratio. If this value is above 4, the
AEC has a “good” peak to average ratio.

SET_LOCKER_ENABLED
GET_LOCKER_ENABLED uint32

[0,1]
0 - Automatic fine-
grain delay control
disabled
1 - Automatic fine-
grain delay control
enabled

Enable automatic fine-grain delay control.
If enabled, the fine-grain delay control
state machine overrides the setting for
automatic coarse-grain delay control, so
the SET_ADEC_ENABLED control
command shouldn’t be used.

SET_LOCKER_DELAY_SETPOINT_E
NABLED
GET_LOCKER_DELAY_SETPOINT_E
NABLED

uint32

[0,1]
0 - delay setpoint
disabled (default)
1 - delay setpoint
enabled

Set the delay setpoint enabled flag. When
enabled, if the fine-grain delay estimator
is unable to find the correct delay, then
instead of triggering a coarse-grain delay
estimate it sets the delay to a user
defined value. This can reduce recovery
time after a delay change.
Before setting
SET_LOCKER_DELAY_SETPOINT_ENAB
LED to 1, make sure that the delay value
and direction are set using
SET_LOCKER_DELAY_SETPOINT_SAMP
LES and
SET_LOCKER_DELAY_SETPOINT_DIREC
TION commands

SET_LOCKER_DELAY_SETPOINT_S
AMPLES
GET_LOCKER_DELAY_SETPOINT_S
AMPLES

uint32 default: 0

Set the number of samples of delay that
the automatic fine-grain delay control sets
if
SET_LOCKER_DELAY_SETPOINT_ENAB
LED is set to 1, and the fine-grain
estimator fails to converge to a delay.

SET_LOCKER_DELAY_SETPOINT_D
IRECTION
GET_LOCKER_DELAY_SETPOINT_
DIRECTION

uint32

[0,1]
0 - delay the
Reference input
(default)
1 - delay the Mic
input

Set the direction of input delay that the
automatic fine-grain delay control sets if
SET_LOCKER_DELAY_SETPOINT_ENAB
LED is set to 1, and the fine-grain
estimator fails to converge to a delay.

GET_LOCKER_STATE str

“BOTH_WAIT”
“LOCKER_SEARC
H”
“ADEC_TRIGGERE
D”
“DELAY_PROPAG
ATING”

Get the current state of automatic fine-
grain delay control state machine.

[A] When either of automatic coarse-grain or fine-grain delay control systems are enabled, this value
will be overwritten, therefore the SET commands should not be used. GET commands remain valid.

4.4.4. INTERFERENCE CANCELLER

The Interference Canceller (IC) suppresses static noise from point sources such as cooker hoods,
washing machines, or radios for which there is no reference audio signal available. When an internal
Voice Activity Detector (VAD) indicates the absence of voice, the IC adapts to remove noise from point
sources in the environment. When the VAD detects voice, the IC suspends adaptation which maintains
suppression of the interfering noise sources previously adapted to.
The IC only operates on the ASR channel from the pipeline output. The communications output channel
optionally has a beamformer which fixes a region of interest directly in front, perpendicular to the plane
of the two microphones.

 54

The following table describes the configuration parameters for the Interference Canceller.

Table 4-16 Interference Canceller (IC) parameter

COMMAND TYPE VALUE DESCRIPTION NOTE
S

SET_BYPASS_IC
GET_BYPASS_IC uint32

[0,1]
0 = IC bypass
disabled (default)
1 = IC bypass
enabled

Set IC bypass parameter. If set
to one, IC processing is bypassed. A

SET_CH1_BEAMFORM_ENABLE
GET_CH1_BEAMFORM_ENABLE uint32

[0,1]
0 = Passthrough
IC input channel 1
onto IC output
channel 1
1 = Beamformed
output on IC output
channel 1 (default)

Enable beamformed output on IC output
channel index 1.

RESET_FILTER_IC This command resets the IC filter.

[A] If Alternative architecture mode (ALT_ARCH) is enabled (default), the IC bypass state will be
dynamically changed by the firmware. Do not use the SET command. The GET command remains
functional.

4.4.5. NOISE SUPPRESSOR (NS)

The Noise Suppressor (NS) suppresses noise from sources whose frequency characteristics do not
change rapidly over time. This includes diffuse background noise and stationary noise sources.
The following table describes the settings for the Noise Suppressor.

Table 4-17 Noise Suppressor (NS) commands

COMMAND TYPE VALUE DESCRIPTION

SET_BYPASS_SUP
GET_BYPASS_SUP uint32 [0,1]

Set suppressor bypass parameter. If set to
one, the suppressor, which contains the
noise suppression stages is bypassed.
0 - suppressor bypass disabled (default)
1 - suppressor bypass enabled

SET_ENABLED_NS
GET_ENABLED_NS uint32 [0,1]

Set noise suppression enabled parameter
within the suppressor. If set to one, the noise
suppression stage within suppressor is
enabled. Changing this parameter only takes
effect if the suppressor is not bypassed.
0 - noise suppression disabled
1 - noise suppression enabled (default)

 55

4.4.6. AUTOMATIC GAIN CONTROL (AGC) AND LOSS CONTROL

The Automatic Gain Control (AGC) can dynamically adapt the audio gain, or apply a fixed gain such
that voice content maintains a desired output level. The AGC uses an internal Voice Activity Detector
to normalise voice content and avoid amplifying noise sources and applies a soft limiter to avoid
clipping on the output.
The desired output level of voice content is defined by an upper and lower threshold. If a voice signal
is outside of the upper and lower threshold then the gain will adapt accordingly. If the voice signal is
within the upper and lower threshold then the gain will remain constant.
The rate at which the gain increases or decreases per audio frame can also be configured. The gain
increment value must be greater than 1, whilst the gain decrement value must be below 1. When the
gain is adapting, the current gain value is multiplied by either the increment or decrement value to
calculate the gain value to be applied on the next audio frame.
The Loss Control process improves the subjective audio quality by attenuating any residual echo of
the reference far-end audio. It is designed to be used on the communications channel. In cases where
there is both far-end echo and near-end audio then the attenuation is reduced, allowing listeners to
interrupt each other. The Loss Control relies on the Automatic Echo Canceller in order to classify and
attenuate residual far-end echo.
The following table details the configuration parameters for the AGC.

Table 4-18 Automatic Gain Control (AGC) parameters

COMMAND TYPE VALUE DESCRIPTION

SET_ADAPT_CH0_AGC
SET_ADAPT_CH1_AGC
GET_ADAPT_CH0_AGC
GET_ADAPT_CH1_AGC

uint32 [0,1]
Set to enable gain adaptation in the AGC for
channel 0 or 1.
0 - adaptation disabled for the channel
1 - adaptation enabled for the channel

SET_LC_ENABLED_CH0_AGC
SET_LC_ENABLED_CH1_AGC
GET_LC_ENABLED_CH0_AGC
GET_LC_ENABLED_CH1_AGC

uint32 [0,1]
Set Loss Control to be enabled in the AGC for
channel 0 or 1.
0 - Loss Control disabled for the channel
1 - Loss Control enabled for the channel

SET_GAIN_CH0_AGC
SET_GAIN_CH1_AGC
GET_GAIN_CH0_AGC
GET_GAIN_CH1_AGC

Q16.16 [0..32767]
Set the linear gain parameter to be applied in the
AGC for channel 0 or 1. Values are linear.
Default: 500

SET_MAX_GAIN_CH0_AGC
SET_MAX_GAIN_CH1_AGC
GET_MAX_GAIN_CH0_AGC
GET_MAX_GAIN_CH1_AGC

Q16.16 [0..32767]
Set the maximum gain threshold in the AGC for
channel 0 or 1. Values are linear.
Default: 1000

SET_UPPER_THRESHOLD_CH0_AG
C
SET_UPPER_THRESHOLD_CH1_AG
C
GET_UPPER_THRESHOLD_CH0_A
GC
GET_UPPER_THRESHOLD_CH1_A
GC

Q1.31 [0..1]
Set the upper threshold for desired voice level.
Values are in range 0 to 1 (full-scale) and must be
greater than the lower threshold of the channel.

SET_LOWER_THRESHOLD_CH0_A
GC
SET_LOWER_THRESHOLD_CH1_A
GC
GET_LOWER_THRESHOLD_CH0_A
GC
GET_LOWER_THRESHOLD_CH1_A
GC

Q1.31 [0..1]
Set the lower threshold for desired voice level.
Values are in range 0 to 1 (full-scale) and must be
lower than the upper threshold of the channel.

 56

COMMAND TYPE VALUE DESCRIPTION

SET_INCREMENT_GAIN_STEPSIZE_
CH0_AGC
SET_INCREMENT_GAIN_STEPSIZE_
CH1_AGC
GET_INCREMENT_GAIN_STEPSIZE
_CH0_AGC
GET_INCREMENT_GAIN_STEPSIZE
_CH1_AGC

Q16.16 [1..32767]
Set the rate at which the gain increases. This value
is applied on a per-frame basis when voice content
is detected.

SET_DECCREMENT_GAIN_STEPSIZ
E_CH0_AGC
SET_DECREMENT_GAIN_STEPSIZE
_CH1_AGC
GET_DECREMENT_GAIN_STEPSIZE
_CH0_AGC
GET_DECREMENT_GAIN_STEPSIZE
_CH1_AGC

Q16.16 [0..1]
Set the rate at which the gain decreases. This value
is applied on a per-frame basis when voice content
is detected.

4.4.7. ALTERNATIVE ARCHITECTURE MODE (ALT_ARCH)

The Alternative Architecture mode, when enabled, improves Echo Cancellation performance in
reverberate environments. It operates by re-configuring the audio pipeline by switching out either the
AEC or the IC, depending on the energy in the AEC reference signal, to recover resources to be used
to increase the specification of the remaining pipeline.
The two audio pipeline configurations are summarised below:

} ALT_ARCH disabled ALWAYS apply echo-cancelling AND interference cancelling; or
} ALT_ARCH enabled apply ONLY echo-cancelling when a reference signal is available,

otherwise ONLY apply interference cancelling
The figure below expands the implementation details of the alternative mode switching. Multiplexers
permit the AEC and/or the IC to be bypassed. When the IC is bypassed, only a single channel from
the AEC is used, allowing it to be reconfigured, extending the filters to support a longer tail length. An
internal module which collects statistics about the reference is used to dynamically control these
multiplexers and memory allocation during runtime.
NOTE: Manually bypassing the IC using the Control Interface does not apply the memory reallocation.

 57

The figure below highlights the audio signal path when the Alternative Architecture is disabled (ie.
standard operation).

Figure 4-15 Audio pipeline configuration, [ALT_ARCH=0] mode

Whenever ALT_ARCH=1, then the pipeline dynamically switches between AEC alone, or IC alone. In
this condition the AEC is able to make use of additional memory increasing the echo cancelling period,
and making it more resilient to echo in highly reverberant conditions.

Figure 4-16 Audio pipeline configuration, [ALT_ARCH=1] when reference signal is present

 58

The dynamic switching uses statistics collected from the reference signal to establish if echo
cancelling is required.

Figure 4-17 Audio pipeline configuration, [ALT_ARCH=1] when reference signal is absent

The following table summarises the audio characteristics for standard and alternative architectures.

Table 4-19 Alternative pipeline mode characteristics

PIPELINE
CONFIGURATION

FAR-END AUDIO (AEC REF)
STATUS

PIPELINE
FUNCTIONALITY

AEC
CHARACTERISTICS

ALT_ARCH = 0 With and without Far-end audio present IC enabled
AEC enabled Max echo delay = 150mS

ALT_ARCH = 1 No far-end audio IC enabled
AEC disabled No cancellation

ALT_ARCH = 1 Far-end audio present IC disabled
AEC enabled Max echo delay = 225mS

The following table describes the configuration parameters for the Alternative Architecture.

Table 4-20 Alternative pipeline mode commands

COMMAND TYPE VALUE DESCRIPTION

SET_ALT_ARCH_ENABLED
GET_ALT_ARCH_ENABLED uint32

[0,1]
0 - Alt arch is
disabled.
1 - Alt arch is
enabled
(default)

Enable or disable alternate architecture (Alt arch). When alt arch is
enabled, the system works in either AEC mode (when far end signal
is detected) or IC mode (when far end signal is not detected). When
in AEC mode in Alt arch, AEC processing happens on only one Mic
channel with 15 phases per mic-ref AEC filter.

 59

5. ADDITIONAL INFORMATION

5.1. DOCUMENTATION

Table 5-1 Additional documentation

DOCUMENT TITLE DOWNLOAD

XVF3510-UA Datasheet https://www.xmos.ai/file/xvf3510-ua-datasheet

XVF3510-INT Datasheet https://www.xmos.ai/file/xvf3510-int-datasheet

XMOS xTIMEcomposer Tools User Guide https://www.xmos.ai/file/tools-user-guide

XVF3510 Development Kit Setup Guides https://www.xmos.ai/file/xvf3510-dev-kit-setup-guides

5.2. DEVICE FIRMWARE AND DRIVERS

Table 5-2 Device firmware

DEVICE FIRMWARE & APPLICATION
SOFTWARE DOWNLOAD

XVF3510-INT Firmware and Host applications https://www.xmos.ai/file/xvf3510-int-release

XVF3510-UA Firmware and Host applications https://www.xmos.ai/file/xvf3510-ua-release

xTIMEcomposer Programming Tools https://www.xmos.ai/software-tools

6. REVISION HISTORY

DOCUMENT
VERSION RELEASE DATE CHANGE DESCRIPTION

XM-014232-PC-2 23 Jul 2020 Describes V4.0 Firmware operation.
Note: this document supersedes XM-013914-PC - XVF3510 control guide

XM-014232-PC-3 18 September 2020

XVF3510 V4.1 firmware release update:
- Changes to SPI Slave boot process
- Addition of USB volume control on -UA variant.

Revised all links to point to xmos.ai website

XM-014232-PC-5 8 January 2021
Updated for V4.2 firmware:

- New SPI boot process
- Updates to AVS dev kit setup

 60

APPENDICES
LIST OF APPENDICES

• Appendix A: Parameter summary
• Appendix B: Boot Status codes (RUN_STATUS)
• Appendix C: Example SPISPEC file format
• Appendix D: Custom connection for SPI Booting of XVF3510-UA on Development kit
• Appendix E: USB Enumeration data
• Appendix F: USB HID - Development kit worked example
• Appendix G: General purpose filter example
• Appendix H: Control parameter protocol
• Appendix I: Flash programming and update flow
• Appendix J: Capturing packed samples for system integration

 61

APPENDIX A: PARAMETER SUMMARY
The following section summarises the XVF3510 parameters which are programmable via the control
interfaces or flash data partition. These parameters allow the setup of the XVF3510 processor’s
interfaces and tuning of the internal signal processing.
To aid quick reference of the key parameters the summary is split into two sections. The first details
the most frequently used parameters which are required for interface configuration and basic control,
and the second detail advanced parameters which will not generally need to be modified. Further
details on the specific usage of parameters are discussed in the previous sections of the document
and referenced below for convenience.

NOTE: The parameters shown below can be formatted into Read and Write commands, where
appropriate by adding the prefix ‘GET_’ and ‘SET_’ for Read and Write respectively.

Table 6-1 Basic parameter summary ('-' used to indicate not applicable)

PARAMETER
READ

/
WRITE

DESCRIPTION 3510-UA
DEFAULT

3510-INT
DEFAULT

VERSION R Firmware version – See release notes and
section 3.1 above vX.Y.Z vX.Y.Z

DELAY_SAMPLES R/W Configurable delay in samples 0 0

STATUS R Status 0 0

DEVICE_TO_USB_BIT
_RES R/W Device to USB bit resolution 16 -

DEVICE_TO_USB_RA
TE R/W Device to USB rate 48000 -

GPI_INT_CONFIG W Sets the interrupt config for a specific pin - -

GPI_INT_PENDING_PI
N R Read whether interrupt was triggered for

selected pin - -

GPI_INT_PENDING_P
ORT R Read whether interrupt was triggered for

all pins on selected port - -

GPI_PIN R Read current state of the selected GPIO
pin - -

GPI_PIN_ACTIVE_LEV
EL W Set the active level for a specific GPI pin.

0: active low 1: active high 0 0

GPI_PORT R Read current state of the selected GPIO
port - -

GPI_READ_HEADER R/W Sets the selected port and pin for the next
GPIO read 0 0 0 0

GPO_FLASHING W
Set the serial flash mask for a specific pin.
Each bit in the mask describes the GPO
state for 100ms intervals

0 0

GPO_PIN W Write to a specific GPIO pin - -

GPO_PIN_ACTIVE_LE
VEL W Set the active level for a specific GPO pin.

0: active low 1: active high 0 0

GPO_PORT W GPIO: Write to all pins of a GPIO port - -

GPO_PWM_DUTY W GPIO: Set the pwm duty for a specific pin.
Value given as an integer percentage 0 0

 62

PARAMETER
READ

/
WRITE

DESCRIPTION 3510-UA
DEFAULT

3510-INT
DEFAULT

I2S_RATE R/W
I2S rate. This command can be used in
SPI Boot Delay mode prior to
SET_MIC_START_STATUS 1

48000 48000

I2S_START_STATUS R/W
Start I2S. This command can be specified
from the control interface in case of SPI
booting INT device in delayed start mode.

- -

IO_MAP W
Set IO map for the device.
arg1: dest
arg2: source

- -

IO_MAP_AND_SHIFT R Get IO map and output shift values for the
device. - -

OUTPUT_SHIFT W
For a selected output set the no. of bits
the output samples will be shifted by.
Positive shift value indicates left shift,
negative indicates right shift.

- -

SERIAL_NUMBER R/W Read / Write the serial number from USB
descriptor (normally initialised from flash. 0 0

SYS_CLK_TO_MCLK_
OUT_DIVIDER R/W

Get XCore divider from system clock to
output master clock. This command can
be used in SPI Boot Delay mode prior to
SET_MIC_START_STATUS 1

11 11

USB_BCD_DEVICE R/W USB Device Release Number (bcdDevice) 1 -

USB_PRODUCT_ID R/W USB Product ID 20 (0x0014) -

USB_PRODUCT_STRI
NG R/W Get USB Product string XVF3510 (UAC1.0)

Adaptive -

USB_SERIAL_NUMBE
R W

Load serial number from flash and
initialise USB device descriptor with it. Will
not work after boot since descriptor is
populated only once with USB start.

- -

USB_START_STATUS R/W
Start USB. This command is only run from
the flash. Run it only with -l option to
generate the json item to use in the flash
data-partition

- 0

USB_TO_DEVICE_BIT
_RES R/W USB to device bit resolution 16 -

USB_TO_DEVICE_RA
TE R/W USB to device rate 48000 -

USB_VENDOR_ID R/W USB Vendor ID 8369 (0x20B1) -

USB_VENDOR_STRIN
G R/W USB Vendor string XMOS -

MCLK_IN_TO_PDM_C
LK_DIVIDER R/W xCORE divider from input master clock to

6.144MHz DDR PDM microphone clock 2 2

ADEC_ENABLED R/W Automatic delay estimator controller
enabled: 0: off 1: on 0 0

ADEC_MODE R
Automatic delay estimator controller
mode: 0: normal AEC mode 1: delay
estimation mode

0 0

 63

PARAMETER
READ

/
WRITE

DESCRIPTION 3510-UA
DEFAULT

3510-INT
DEFAULT

DELAY_DIRECTION R/W Configurable delay direction: 0: delay
references 1: delay mics 0 0

DELAY_ESTIMATE R Delay estimate - -

DELAY_ESTIMATOR_
ENABLED R/W Enable/disable delay estimation 0 0

MANUAL_ADEC_CYC
LE_TRIGGER W Trigger a delay estimate - -

MIC_SHIFT_SATURAT
E R/W The shift value and saturation (1=enable)

to be applied to the input mic samples 0 0 0 0

Table 6-2 Advanced parameter summary

PARAMETER
READ

/
WRITE

DESCRIPTION 3510-UA
DEFAULT

3510-INT
DEFAULT

BLD_HOST R Build host Jenkins Jenkins

BLD_MODIFIED R Build modified from given view/hash false false

BLD_MSG R Build message Default Default

BLD_REPO_HASH R Repo hash – unique source version See release notes See release notes

BLD_XGIT_HASH R xgit hash – unique build version See release notes See release notes

BLD_XGIT_VIEW R xgit view sw_xvf3510_master sw_xvf3510_master

FILTER_BYPASS R/W Filter bypass state.
arg1: 0 - filter enabled 1 - bypassed 1 1

FILTER_COEFF R/W

Set biquad coeffs for a selected filter
using floating point.
arg1..10: 5x2 float coeffs in forward
order (a1, a2, b0, b1, b2) where a0
always is 1.0.

0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000

0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000

FILTER_COEFF_RAW R/W

Set raw biquad coeffs for a selected
filters.
arg1..10: 2 sets of coeffs in forward
order (b0, b1, b2, =-E1, -a2) signed
Q28 format

 0 0 0 0 0 0 0 0
0 0

 0 0 0 0 0 0 0 0
0 0

FILTER_INDEX R/W
Set filter index. Selects which filter
block will be read from/written to
arg1: dest

0 0

HARDWARE_BUILD R
Get the build number from the
hardware build section of the flash
data partition.

-1 -1

I2C R/W Read from an I2C device connected
to the xvf device - -

I2C_READ_HEADER R/W Get the address register
address and count of next I2C read 0 0 0 -

 64

PARAMETER
READ

/
WRITE

DESCRIPTION 3510-UA
DEFAULT

3510-INT
DEFAULT

I2C_WITH_REG R/W Read from the register of an I2C
device connected to the xvf device - -

MONITOR_STATE_USI
NG_GPO_ENABLED W

Enable monitoring of state on GPO.
This command is only run from the
flash. Run it only with -l option to
generate the json item to use in the
flash data-partition

- -

KWD_BOOT_STATUS R Gets boot status for keyword
detectors 0 0

KWD_INTERRUPT_PIN R/W GPI pin index to receive keyword
interrupt on 4 4

MAX_UBM_CYCLES R Get maximum no. of cycles taken by
the user buffer management function - -

MIC_START_STATUS R/W Get microphone client start status. 2 2

REMAX_UBM_CYCLES W Reset the max user buffer
management cycles count - -

RUN_STATUS R Gets run status for the device (See
Appendix B) - -

SPI R Gets the contents of the SPI read
buffer - -

SPI_PUSH W Push SPI command data onto the
execution queue - -

SPI_PUSH_AND_EXEC W Push SPI command data and
execute the command from the stack - -

SPI_READ_HEADER R/W Address and count of next SPI read 0 0 0 0

ADAPTATION_CONFIG
_AEC R/W

Adaptation config
0 = filter adapt with variable stepsize
1 = filter adapt with fixed stepsize
2 = filter fixed

0 0

BYPASS_AEC R/W AEC bypass 1 1

COEFF_INDEX_AEC R/W AEC coefficient index 0 0

ERLE_CH0_AEC R AEC channel 0 ERLE - -

ERLE_CH1_AEC R AEC channel 1 ERLE - -

F_BIN_COUNT_AEC R AEC f bin count 257 257

FILTER_COEFFICIENTS
_AEC R AEC filter coefficients - -

FORCED_MU_VALUE_
AEC R/W AEC forced mu value 1 1

FRAME_ADVANCE_AE
C R AEC frame advance 240 240

MU_LIMITS_AEC R/W AEC mu_high and mu_low 1.0000 0.0001 1.0000 0.0001

MU_SCALAR_AEC R/W AEC get mu_scalar 0.4 0.4

 65

PARAMETER
READ

/
WRITE

DESCRIPTION 3510-UA
DEFAULT

3510-INT
DEFAULT

RESET_FILTER_AEC W AEC reset filter. Note: do NOT prefix
with SET_ - -

SIGMA_ALPHAS_AEC R/W AEC sigma alphas 5 5 11 5 5 11

X_CHANNEL_PHASES_
AEC R AEC x channel phases 15 15 4 0 0 0 0 0

 0 0
15 15 4 0 0 0 0 0

 0 0

X_CHANNELS_AEC R AEC x channels 2 2

X_ENERGY_DELTA_AE
C R/W AEC X energy delta - -

X_ENERGY_GAMMA_L
OG2_AEC R/W AEC X energy gamma log2 - -

Y_CHANNELS_AEC R AEC y channels 1 1

ADAPTATION_CONFIG
_IC R/W IC: get adaptation config 0 0

BYPASS_IC R/W IC: get bypass state 0 0

CH1_BEAMFORM_ENA
BLE R/W Channel 1 Beamforming enabled 1 1

COEFFICIENT_INDEX_I
C R/W IC Coefficient index 0 0

FILTER_COEFFICIENTS
_IC R IC Filter coefficients - -

FORCED_MU_VALUE_I
C R/W IC forced mu value - -

PHASES_IC R IC phases 10 10

PROC_FRAME_BINS_IC R IC proc frame bins 256 256

RESET_FILTER_IC W IC reset filter, note: do not prefix with
SET_ - -

SIGMA_ALPHA_IC R/W IC adaptation config 11 11

X_ENERGY_DELTA_IC R/W IC X energy delta - -

X_ENERGY_GAMMA_L
OG2_IC R/W IC X energy gamma log2 - -

BYPASS_SUP R/W SUP bypass 0 0

ENABLED_AES R/W SUP echo suppression enabled (DO
NOT ENABLE) 0 0

ENABLED_NS R/W SUP noise suppression enabled 1 1

NOISE_FLOOR_NS R/W SUP noise suppression noise floor 0.1259 0.1259

ADEC_FAR_THRESHOL
D R/W

ADEC Far-end signal energy
threshold above which AGM is
updated

 0.000002 0.000002

 66

PARAMETER
READ

/
WRITE

DESCRIPTION 3510-UA
DEFAULT

3510-INT
DEFAULT

ADEC_PEAK_TO_AVER
AGE_GOOD_AEC R/W

ADEC the peak to average ratio that
is considered good when in normal
AEC mode

 4.000000 4.000000

ADEC_TIME_SINCE_RE
SET R Time in milliseconds since last

automatic delay change by ADEC - -

AEC_PEAK_TO_AVERA
GE_RATIO R AEC coefficients peak to average

ratio - -

AGM R AEC Goodness Metric estimate (0.0 -
1.0) - -

ALT_ARCH_ENABLED R/W State of XVF3510 alternate
architecture setting 1 1

ERLE_BAD_BITS R/W ERLE bad threshold in bits (log2) - -

ERLE_BAD_GAIN R/W Set how steeply AGM drops off when
ERLE below threshold 0.0664 0.0664

ERLE_GOOD_BITS R/W ERLE good threshold in bits (log2) 2 2

LOCKER_DELAY_SETP
OINT_DIRECTION R/W Delay set point direction 0 0

LOCKER_DELAY_SETP
OINT_ENABLED R/W Delay set point enabled 0 0

LOCKER_DELAY_SETP
OINT_SAMPLES R/W Delay setpoint samples 0 0

LOCKER_ENABLED R/W Locker delay detection and control 0 0

LOCKER_NUM_BAD_F
RAMES_THRESHOLD R/W

No. of bad peak to avg ERLE frames
that locker sees before it triggers
ADEC.

666 666

LOCKER_STATE R Locker state BOTH_WAIT BOTH_WAIT

MAX_CONTROL_TIME_
STAGE_A R Max control time per frame - -

MAX_DSP_TIME_STAG
E_A R Max dsp time per frame - -

MAX_IDLE_TIME_STAG
E_A R Max idle time per frame - -

MAX_RX_TIME_STAGE_
A R Max rx time per frame - -

MAX_TX_TIME_STAGE_
A R Max tx time per frame - -

MIN_CONTROL_TIME_
STAGE_A R Min control time per frame - -

MIN_DSP_TIME_STAGE
_A R Min dsp time per frame - -

MIN_IDLE_TIME_STAG
E_A R Min idle time per frame - -

 67

PARAMETER
READ

/
WRITE

DESCRIPTION 3510-UA
DEFAULT

3510-INT
DEFAULT

MIN_RX_TIME_STAGE_
A R Min rx time per frame - -

MIN_TX_TIME_STAGE_
A R Min tx time per frame - -

PEAK_PHASE_ENERGY
_TREND_GAIN R/W Value which sets AGM sensitivity to

peak phase energy slope 3 3

PHASE_POWER_INDEX R/W ERLE gain 0 0

PHASE_POWERS R
5 phase powers (240 samples per
phase) used in delay estimation from
the index set.

0.000000 dB
0.000000 dB
0.000000 dB
0.000000 dB
0.000000 dB

0.000000 dB
0.000000 dB
0.000000 dB
0.000000 dB
0.000000 dB

RESET_TIME_STAGE_A W Reset stage A frame time - -

MAX_CONTROL_TIME_
STAGE_B R Max control time per frame - -

MAX_DSP_TIME_STAG
E_B R Stage B max dsp time per frame - -

MAX_IDLE_TIME_STAG
E_B R Stage B max idle time per frame - -

MAX_RX_TIME_STAGE_
B R Stage B max rx time per frame - -

MAX_TX_TIME_STAGE_
B R Stage B max tx time per frame - -

MIN_CONTROL_TIME_
STAGE_B R Stage B min control time per frame - -

MIN_DSP_TIME_STAGE
_B R Stage B min dsp time per frame - -

MIN_IDLE_TIME_STAG
E_B R Stage B min idle time per frame - -

MIN_RX_TIME_STAGE_
B R Stage B min rx time per frame - -

MIN_TX_TIME_STAGE_
B R Stage B min tx time per frame - -

RESET_TIME_STAGE_B W Reset stage B frame time - -

ADAPT_CH0_AGC R/W AGC adaptation for channel 0 1 1

ADAPT_CH1_AGC R/W AGC adaptation for channel 1 1 1

DECREMENT_GAIN_ST
EPSIZE_CH0_AGC R/W Stepsize with which gain is

decremented for AGC ch0 0.87 0.87

DECREMENT_GAIN_ST
EPSIZE_CH1_AGC R/W Stepsize with which gain is

decremented for AGC ch1 0.988 0.988

GAIN_CH0_AGC R/W Gain for channel 0 - -

GAIN_CH1_AGC R/W Gain for channel 1 - -

 68

PARAMETER
READ

/
WRITE

DESCRIPTION 3510-UA
DEFAULT

3510-INT
DEFAULT

INCREMENT_GAIN_ST
EPSIZE_CH0_AGC R/W Stepsize with which gain is

incremented for AGC ch0 1.197 1.197

INCREMENT_GAIN_ST
EPSIZE_CH1_AGC R/W Stepsize with which gain is

incremented for AGC ch1 1.0034 1.0034

LC_ENABLED_CH0_AG
C R/W Loss control enable for channel 0 0 0

LC_ENABLED_CH1_AG
C R/W Loss control enable for channel 1 1 1

LOWER_THRESHOLD_
CH0_AGC R/W Lower threshold of AGC desired level

for channel 0 0.1905 0.1905

LOWER_THRESHOLD_
CH1_AGC R/W Lower threshold of AGC desired level

for channel 1 0.4 0.4

UPPER_THRESHOLD_C
H0_AGC R/W Upper threshold of AGC desired

level for channel 0 0.7079 0.7079

UPPER_THRESHOLD_C
H1_AGC R/W Upper threshold of AGC desired

level for channel 1 0.4 0.4

MAX_CONTROL_TIME_
STAGE_C R Stage C max control time per frame - -

MAX_DSP_TIME_STAG
E_C R Stage C max dsp time per frame - -

MAX_GAIN_CH0_AGC R/W Max gain for channel 0 999.9847 999.9847

MAX_GAIN_CH1_AGC R/W Max gain for channel 1 999.9847 999.9847

MAX_IDLE_TIME_STAG
E_C R Stage C max idle time per frame - -

MAX_RX_TIME_STAGE_
C R Stage C max rx time per frame - -

MAX_TX_TIME_STAGE_
C R Stage C max tx time per frame - -

MIN_CONTROL_TIME_
STAGE_C R Stage C min control time per frame - -

MIN_DSP_TIME_STAGE
_C R Stage C min dsp time per frame - -

MIN_IDLE_TIME_STAG
E_C R Stage C min idle time per frame - -

MIN_RX_TIME_STAGE_
C R Stage C min rx time per frame - -

MIN_TX_TIME_STAGE_
C R Stage C min tx time per frame - -

REF_OUT_CH1 R/W Stage C: check if reference audio is
output in channel 1 0 0

RESET_TIME_STAGE_C W Reset stage C frame time - -

 69

APPENDIX B: BOOT STATUS CODES (RUN_STATUS)
The following table describes the Boot status codes returned by the startup processes accessible
though the GET_RUN_STATUS control utility command.

CODE LABEL NOTE

0 INIT Reserved initial value. Decline attempts to initiate DFU.

1 DATA_PARTITION_NOT_FOUND Not used.

2 FACTORY_DATA_SUCCESS Normal operation.

3 UPGRADE_DATA_SUCCESS Normal operation.

4 FACTORY_DATA_IN_PROGRESS Image scanning in progress. Decline attempts to initiate DFU.

5 UPGRADE_DATA_IN_PROGRESS Image scanning in progress. Decline attempts to initiate DFU.

6 DFU_IN_PROGRESS Enough DFU commands received to establish a connection to on-board
flash memory. Not cleared until reboot.

7 HW_BUILD_READ_SUCCESS Reserved intermediate value. Normally never returned.

8 HW_BUILD_PARTITION_SIZE_ERROR Problem reading data partition header. Check factory programming.

9 HW_BUILD_PARTITION_BASE_ERROR Problem reading data partition header. Check factory programming.

10 HW_BUILD_READ_ERROR Problem reading data partition header. Check factory programming.

11 HW_BUILD_CRC_ERROR Problem reading data partition header. Check factory programming.
May indicate that no data partition is present or a flash wear issue.

12 HW_BUILD_TAG_ERROR Problem reading data partition header. Check factory programming.

13 FACTORY_VERSION_ERROR No valid upgrade image found. A factory image did not match running
version. This can indicate fail-safe mode.

14 UPGRADE_VERSION_ERROR
Valid upgrade boot and data images found but data image version does
not match running version. Check correct version of deployed field
upgrade.

15 FACTORY_ITEM_READ_ERROR Problem reading configuration items from data image. Unexpected
error.

16 UPGRADE_ITEM_READ_ERROR Problem reading configuration items from data image. Unexpected
error.

17 FACTORY_ITEM_INVALID_TYPE Last item encountered is not of terminator type. Should never happen
with script generated data images. Check generation procedure.

18 UPGRADE_ITEM_INVALID_TYPE Last item encountered is not of terminator type. Should never happen
with script generated data images. Check generation procedure.

19 DFU_FLASH_CONNECT_FAILED Failed to establish on-board flash connection. Check factory
programming. Check flash specification (see section below).

20 DFU_FLASH_SPEC_UNSUITABLE Flash specification unsuitable for DFU. Check flash specification (see
section below).

 70

APPENDIX C: EXAMPLE .SPISPEC FILE FORMAT
SPISPEC file for Adesto AT25SF161.
 0, /* AT25SF161 - Just specify 0 as flash_id */
 256, /* page size */
 8192, /* num pages */
 3, /* address size */
 4, /* log2 clock divider */
 0x9F, /* QSPI_RDID */
 0, /* id dummy bytes */
 3, /* id size in bytes */
 0, /* device id (leave zero) */
 0x20, /* QSPI_SE */
 4096, /* Sector erase is always 4KB */
 0x06, /* QSPI_WREN */
 0x04, /* QSPI_WRDI */
 PROT_TYPE_SR, /* Protection via SR */
 {{0x18,0x00},{0,0}}, /* QSPI_SP, QSPI_SU */
 0x02, /* QSPI_PP */
 0xEB, /* QSPI_READ_FAST */
 1, /* 1 read dummy byte */
 SECTOR_LAYOUT_REGULAR, /* mad sectors */
 {4096,{0,{0}}}, /* regular sector sizes */
 0x05, /* QSPI_RDSR */
 0x01, /* QSPI_WRSR */
 0x01, /* QSPI_WIP_BIT_MASK */

 71

APPENDIX D: SPI BOOT CUSTOM CONNECTION
SPI BOOT UA XVF3510 DEVICE
The UA release package contains the send_image_from_rpi.py and the SPI bootable image of
the corresponding build in the bin folder. If booting an UA binary via SPI, the ribbon cable between
the PiHat and the XVF3510 device must be disconnected and the following pins must be connected:

SIGNAL CONNECTION
(ODD PINS)

CONNECTOR
(ODD PINS)

CONNECTOR
(EVEN PINS)

SIGNAL CONNECTION
(EVEN PINS)

 1 2

 3 4

 5 6 GND*

 7 8 BOOT_SEL

GND* 9 10 RST_N

 11 12

 13 14 GND*

 15 16

 17 18

SPI_MOSI 19 20 GND*

SPI_MISO 21 22

SPI_CLK 23 24 SPI_CSn

GND* 25 26

 27 28

 29 30 GND*

 31 32

 33 34 GND*

 35 36

 37 38

GND* 39 40

* Note: all ground connections need to be connected.

 72

APPENDIX E: USB ENUMERATION
The XVF3510 includes a Human Interface Device (HID) endpoint to enable the XVF3510 to signal
interrupts caused by GPIO events. The table below shows how the XVF3510 HID appears on Windows
using USB view.

DEVIC
E
NAME

DESCRIPTI
ON

DEVIC
E TYPE

VENDO
R ID

PRODUC
T ID

USB
CLAS
S

USB
SUBCLAS
S

USB
PROTOC
OL

SERVIC
E NAME

USB
VERSIO
N

DRIVER
DESCRIPTI
ON

XVF351
0
(UAC1.
0)
Adaptiv
e

USB
Composite
Device

Unknow
n 20b1 0014 00 00 00 usbccgp 2.00

USB
Composite
Device

XVF351
0
(UAC1.
0)
Adaptiv
e

USB Audio
Device Audio 20b1 0014 01 01 00 usbaudi

o 2.00 USB Audio
Device

XVF351
0
(UAC1.
0)
Adaptiv
e

XMOS Control Vendor
Specific 20b1 0014 ff ff ff 2.00

XVF351
0
(UAC1.
0)
Adaptiv
e

USB Input
Device

HID
(Human
Interfac
e
Device)

20b1 0014 03 00 00 HidUsb 2.00 USB Input
Device

During USB enumeration, the XVF3510 HID produces three descriptors. The listing below shows them
as recorded on Windows using USB View. For details of the structure and meaning of these
descriptors, see the USB Specification v2.0 sections 9.6.5 and 9.6.6 and the Device Class Definition
for Human Interface Devices (HID) v1.11 section 6.2.1.
 ===>Interface Descriptor<===
bLength: 0x09
bDescriptorType: 0x04
bInterfaceNumber: 0x04
bAlternateSetting: 0x00
bNumEndpoints: 0x01
bInterfaceClass: 0x03 -> HID Interface Class
bInterfaceSubClass: 0x00
bInterfaceProtocol: 0x00
iInterface: 0x00
 ===>HID Descriptor<===
bLength: 0x09
bDescriptorType: 0x21
bcdHID: 0x0110
bCountryCode: 0x00
bNumDescriptors: 0x01
bDescriptorType: 0x22 (Report Descriptor)
wDescriptorLength: 0x002B
 ===>Endpoint Descriptor<===
bLength: 0x07
bDescriptorType: 0x05
bEndpointAddress: 0x82 -> Direction: IN - EndpointID: 2
bmAttributes: 0x03 -> Interrupt Transfer Type
wMaxPacketSize: 0x0040 = 0x40 bytes
bInterval: 0x08

 73

APPENDIX F: USB HID - EXAMPLE USING THE DEVELOPMENT KIT
WORKED EXAMPLE
An XVF3510 development kit, a Raspberry Pi and a jump wire are required for this example.
The development kit should be configured as XVF3510-UA. Instructions on updating the firmware are
available in the Updating the firmware section.
The development kit should then be connected to a Raspberry Pi and set up according to the
development kit setup guide. Extract the Raspberry Pi host utilities from the release package, and use
them to enable interrupts like so:
vfctrl_usb.exe SET_GPI_INT_CONFIG 0 0 3

The HID events can be observed on /dev/input/event0 on the Raspberry Pi either directly (eg
xxd) or using the evtest utility (normally available through APT on Raspbian).
event0 will be the correct HID device is most cases. If the test system has additional sources of
events, the correct one can be identified under /dev/input by looking at the Handlers line in the
output of /proc/bus/input/devices.
Now toggle INT_N signal on the XK-VF3510 board by connecting it to 3V3 and GND using a jump wire.
Example output from evtest is:
Input driver version is 1.0.1
Input device ID: bus 0x3 vendor 0x20b1 product 0x14 version 0x110
Input device name: "XMOS XVF3510 (UAC1.0) Adaptive"
Supported events:
 Event type 0 (EV_SYN)
 Event type 1 (EV_KEY)
 Event code 128 (KEY_STOP)
 Event code 193 (KEY_F23)
 Event code 194 (KEY_F24)
 Event code 217 (KEY_SEARCH)
 Event type 4 (EV_MSC)
 Event code 4 (MSC_SCAN)
Key repeat handling:
 Repeat type 20 (EV_REP)
 Repeat code 0 (REP_DELAY)
 Value 250
 Repeat code 1 (REP_PERIOD)
 Value 33
Properties:
Testing ... (interrupt to exit)
Event: time 1586524983.094859, type 4 (EV_MSC), code 4 (MSC_SCAN), value 70072
Event: time 1586524983.094859, type 1 (EV_KEY), code 193 (KEY_F23), value 1
Event: time 1586524983.094859, -------------- SYN_REPORT ------------
Event: time 1586524983.353655, type 1 (EV_KEY), code 193 (KEY_F23), value 2
Event: time 1586524983.353655, -------------- SYN_REPORT ------------
Event: time 1586524983.403671, type 1 (EV_KEY), code 193 (KEY_F23), value 2
Event: time 1586524983.403671, -------------- SYN_REPORT ------------
Event: time 1586524983.453659, type 1 (EV_KEY), code 193 (KEY_F23), value 2
Event: time 1586524983.453659, -------------- SYN_REPORT ------------

 74

APPENDIX G: GENERAL PURPOSE FILTER EXAMPLE
WORKED EXAMPLE
Steps in this example:

} Set the stereo USB output to listen to the stereo USB input (loopback, skipping audio
processing pipeline completely)

} Apply a stereo 500Hz high-pass and 4kHz low-pass cascaded biquad filter

- The 500Hz high-pass filter coefficients are:
} a1 = -1.90748889

a2 = 0.91158173
b0 = 0.95476766
b1 = -1.90953531
b2 = 0.95476766

} The 4kHz low-pass filter coefficients are:
} a1 = -1.27958194

a2 = 0.47753396
b0 = 0.04948800
b1 = 0.09897601
b2 = 0.04948800

} Hear the effect filtered signals when the filters are enabled
This example assumes that the input and output sample rate is 48kHz.
First, connect the USB output to the USB input:
vfctrl_usb SET_IO_MAP 0 7 # (USB output left outputs USB input left)
vfctrl_usb SET_IO_MAP 1 8 # (As above for right channel)

Now configure the filter:
vfctrl_usb SET_FILTER_INDEX 2 (USB output left filter)
vfctrl_usb SET_FILTER_COEFF -1.90748889 0.91158173 0.95476766 -1.90953531
0.95476766 -1.27958194 0.47753396 0.04948800 0.09897601 0.04948800
vfctrl_usb SET_FILTER_INDEX 3 (USB output right filter)
vfctrl_usb SET_FILTER_COEFF -1.90748889 0.91158173 0.95476766 -1.90953531
0.95476766 -1.27958194 0.47753396 0.04948800 0.09897601 0.04948800

Now enable the filter:
vfctrl_usb SET_FILTER_INDEX 0
vfctrl_usb SET_FILTER_BYPASS 0
vfctrl_usb SET_FILTER_INDEX 1
vfctrl_usb SET_FILTER_BYPASS 0

Play a white noise source from the USB device and record the input. Use a spectrogram to show the
band limited signal due to the effect of the filters. The effect should also be audible.

 75

APPENDIX H: COMMAND TRANSPORT PROTOCOL
TRANSPORTING CONTROL PARAMETERS PROTOCOL
Control parameters are converted to an array of bytes in network byte order (big endian) before they’re
sent over the transport protocol. For example, to set a control parameter to integer value 305419896
which corresponds to hex 0x12345678, the array of bytes sent over the transport protocol would be
{0x12, 0x34, 0x56, 0x78}. Similarly, a 4 byte payload {0x00, 0x01, 0x23, 0x22} read over the transport
protocol is interpreted as an integer value 0x00012322.
In addition to the control parameters values, commands include Resource ID, the Command ID and
Payload Length fields that must be communicated from the host to the device. The Resource ID is an
8-bit identifier that identifies the resource within the device that the command is for. The Command ID
is an 8-bit identifier used to identify a command for a resource in the device. Payload length is the
length of the data in bytes that the host wants to write to the device or read from the device.
The payload length is interpreted differently for GET_ and SET_ commands. For SET_commands, the
payload length is simply the number of bytes worth of control parameters to write to the device. For
example, the payload length for a SET_ command to set a control parameter of type int32 to a certain
value, would be set to 4. For GET_ commands the payload length is 1 more than the number of bytes
of control parameters to read from the device. For example, a GET_ command to read a parameter of
type int32, payload length would be set to 5. The one extra byte is used for status and is the first byte
(payload[0]) of the payload received from the device. In the example above, payload[0] would be the
status byte and payload[1]..payload[4] would be the 4 bytes that make up the value of the control
parameter.
The table below lists the different values of the status byte and the action the user is expected to take
for each status:

RETURN
CODE VALUE DESCRIPTION

ctrl_done 0 Read command successful. The payload bytes contain valid payload returned from the device

ctrl_wait 1 Read command not serviced. Retry until ctrl_done status returned

ctrl_invalid 3 Error in read command. Abort and debug

The GET_commands need the extra status byte since the device might not return the control parameter
value immediately due to timing constraints. If that is the case the status byte would indicate the status
as ctrl_wait and the user would need to retry the command. When returned a ctrl_wait, the user is
expected to retry the GET_ command until the status is returned as ctrl_done. The first GET_command
is placed in a queue and it will be serviced by the end of each 15ms audio frame. Once the status
byte indicates ctrl_done, the rest of the bytes in the payload indicate the control parameter value.

TRANSPORTING CONTROL PARAMETERS OVER I2C
This section describes the I2C command sequence when issuing read and write commands to the
device.
The first byte sent over I2C after start contains the device address and information about whether this
is an I2C read transaction or a write transaction. This byte is 0x58 for a write command or 0x59 for a
read command. These values are derived by left shifting the device address (0x2c) by 1 and doing a
logical OR of the resulting value with 0 for an I2C write and 1 for an I2C read.
The bytes sequence sent between I2C start and stop for SET_ commands is shown in the figure below.

For GET_ commands, the I2C commands sequence consists of a write command followed by a read
command with a repeated start between the 2 commands. The write command writes the resource ID,
command ID and the expected data length to the device and the read command reads the status byte
followed by the rest of the payload that makes up the control parameter value. The figure below shows
the I2C bytes sequence sent and received for a GET_ command.

 76

TRANSPORTING CONTROL PARAMETERS OVER USB
Use the vendor_id 0x20b1, product_id 0x0014 and interface number 3 to initialize for USB. The API
function libusb_control_transfer() is used for transporting over USB. When calling
libusb_control_transfer(), wIndex corresponds to the Resource ID, wValue is the Command ID and
wLength is the payload length.

FLOATING POINT TO FIXED POINT (Q FORMAT) CONVERSION
Numbers with fractional parts can be represented as floating-point or fixed-point numbers. Floating
point formats are widely used but carry performance overheads. Fixed point formats can improve
system efficiency and are used extensively within the XVF3510. Fixed point numbers have the position
of the decimal point fixed and this is indicated as a part of the format description.
In this document, Q format is used to describe fixed point number formats, with the representation
given as Qm.n format where m is the number of bits reserved for the sign and integer part of the
number and n is the number of bits reserved for the fractional part of the number. The position of the
decimal point is a trade-off between the range of values supported and the resolution provided by the
fractional bits.
The dynamic range of Qm.n format is -2m-1 and 2m-1-2-n with a resolution of 2-n
To convert a floating-point format number to Qm.n format fixed-point number:

} Multiply the floating-point number by 2m.
} Round the result to the nearest integer.
} The resulting integer number is the Qm.n fixed-point representation of the initial floating-

point number.
To convert a Qm.n fixed-point number to floating-point:

} Divide the fixed-point number by 2m.
} The resulting decimal number is a floating-point representation of the fixed-point number.

Converting a number into fixed point format and then back to a floating point number may introduce
an error of up to ±2-(n+1)
Example:
To represent a floating-point number 14.765467 in Q8.24 format, the equivalent fixed-point number
would be 14.765467 x 224 = 247723429.2 which rounds to 247723429.
To get back the floating-point number given the Q8.24 number 247723429, calculate 247723429 ÷ 224
and get back the floating-point number as 14.76546699. The difference of 0.00000001 is correct to
with the error bounds of ±2-25 which is ±0.00000003

 77

APPENDIX I: FLASH PROGRAMMING AND UPDATE FLOW

 78

APPENDIX J: CAPTURING PACKED SAMPLES FOR SYSTEM
INTEGRATION
To assist with system integration, the XVF3510 provides the ability to pack multiple 16kHz channels
into a 48kHz output. The following section describes the usage of packed signals.
All packed functions provide a snapshot of a 16kHz signals over a 48kHz output. If the output stream
is not 48kHz, it will not work because the 3x bandwidth is needed for packing the 16kHz signals. They
all also require that no volume scaling be applied on the host otherwise it will break the marker
sequence resulting in the captured audio being unable to be unpacked. There are two packing
mechanisms however for typical usage where a full capture of the pipeline is needed, PACKED_ALL
is recommended.

CAPTURING PACKED_ALL SIGNALS
PACKED_ALL packs 3 channels into a single channel (mic, ref, pipeline out) so requires two output
channels to capture all 6 signals of interest. When using -UA it uses the bit resolution of the USB output
interface (even if you output to I2S on the -UA device) or assumes 32b it you are using -INT where the
output interface is always I2S. The sequence is as follows:

} top bitres-1 bits of mic sample with LSbit marker ‘0’
} top bitres-1 bits of ref sample with LSbit marker ‘1’
} top bitres-1 bits of pipeline oit sample with LSbit marker ‘1’

The unpacker_packed_all.pyscript looks for 0, 0, 1 for the LS bit to check for a packed_all
sequence, else it will report an error. This packing will work with 16b, 24b and 32b USB bit width. It is
not bit-perfect (it loses 1b for the marker). It can work on a Mac if you use a 16b or 24b output resolution
on -UA device. Since microphones signal levels are quite low from the output of the decimators, it is
recommended to use at least 24b resolution to keep the quantisation noise floor down with respect to
signal.

CAPTURING ALL PIPELINE INPUT AND OUTPUT SIGNALS OVER A 48KHZ USB INTERFACE
The goal here is to capture the pipeline input and output to provide visibility on what signals are actually
entering the pipeline and what processed output was generated. This can be useful when checking
the microphone and reference signals are correctly routed, as well as checking signal delay issues
causing poor AEC performance.
First, set the USB output interface resolution to 24b. This is important because mic signals in a quiet
room (35dBA) may be quantised away in a 16b audio capture. Also, 24b audio has been found to
work on most hosts.
Second, configure the audio crossbar to output PACKED_ALL on USB output channels 0 and 1.
This can be done by setting the parameters in the data partition. To do this, navigate to the data-
partition directory of the Release package. Note, it recommended to make a copy of the default
.json config file for future reference.
To create the “packed output to USB” commands in file
input/set_packed_all_on_usb_out.txt Add the following contents to this file.
SET_IO_MAP 0 16
SET_IO_MAP 1 16

Note that the IO map source 16 is set for both USB output channels. Source 16 automatically resolves
the channel indices so this will result in a stereo output containing a packed capture of all six discrete
channels of interest.
Next, add the following sections to a ua_24b_packed.json file item section and save it:
 {
 "path": "input/set_packed_all_on_usb_out.txt",
 "comment": ""
 },
 {
 "path": "input/device_to_usb_bit_res_24.txt",
 "comment": ""
 },

 79

Now we generate the data partition from our updated json file:
 python3 xvf3510_data_partition_generator.py ua_24b_packed.json

This will generate the new data partition file as
follows:output/data_partition_factory_ua_24b_packed_v4_0_0.bin.
Finally cd up one level to root of the release package and flash the firmware along with the newly
created data partition configuration file:
xflash --no-compression --boot-partition-size 1048576 bin/app_xvf3510_ua_v4_0_0.xe
\
--data data-partition/output/data_partition_factory_ua_24b_packed_v4_0_0.bin

Once the firmware has booted following the flashing operation it can be verified in the sound control
panel that the USB input stream from the XVF3510-UA to the host is now set to 24b.
Next the audio of interest is captured. Do this with a wav capture utility to capture the stereo output
from the USB input from the XVF3510 device at 48kHz. Ensure the file is saved as 32b Signed Integer
which is needed for the next step. Note that viewing/listening to the packed wav is non-sensical
because it contains packed/multiplexed signals and will sound noisy.
Finally convert these packed files into unpacked, 16kHz, 6-Channel audio files.
python host/unpacker_packed_all.py packed_capture.wav unpacked_6ch_16kHz.wav 24

The output file unpacked_6ch_16kHz.wav may now be inspected. Note that the channel assignment
is as follows:

} Microphone Ch 0
} Microphone Ch 1
} Reference input Left
} Reference input Right
} Pipeline Output Ch 0 (nominally ASR)
} Pipeline Output Ch 1 (nominally Comms)

Below is a visualisation of a six-channel audio capture. Note the relatively quiet mic signals compared
with the reference. This is typical and allows for loud near-end signals without distortion.

 80

PACKING SPECIFIC SIGNALS
PACKED_PIPELINE_OUTPUT, PACKED_MIC, PACKED_REF all use the same underlying packing
function. They pack 2 channels (mic0/1 or ref/ref_r or pipe0/pipe1) into a single audio channel. It
requires that the output interface, including host processing, be capable of bit-perfect 32b audio. It
packs the two 16kHz samples into three 48kHz samples as follows:

} top 24b of sample[0] with 8b LSB marker ‘0x00’
} top 24b of sample[1] with 8b LSB marker ’0x01’
} the bottom 8b of sample[0], the bottom 8b of sample[1], 0x00, 8b LSB marker ’0x02’

The unpacker.py script then looks for 0x00, 0x01, 0x02 in the LSByte to check for a packed
sequence. So inspecting the wav in a hex editor should make it clear when it is captured properly.
It will capture bit-perfect data.
Packing specific signals will not work on a Mac because it only supports 24b audio due to core audio
representing audio using single-precision floating-point. It has been tested and works well on Linux
(x86/RPI) which supports bit-perfect 32b audio.

 81

Copyright © 2021 XMOS Ltd, All Rights Reserved.
XMOS Ltd is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.
XMOS, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned
in this document are the trademarks or registered trademarks of their respective owners.

