l MOS® UART (3.0.0)

UART library

A software defined, industry-standard, UART (Universal Asynchronous Receiver/Transmitter) library that
allows you to control an UART serial connection via the xCORE GPIO hardware-response ports. This library
is controlled via C using the XMOS multicore extensions.

Features
e UART receive and transmit e Half-duplex mode (applicable to RS485)
e Supports speeds up to 10MBit/s e Efficient multi-uart mode for implementing

multiple connections

Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins | Ports | Clocks | Ram Logical cores
Standard TX 1 1 0 ~1.0K | O

Standard TX (buffered) 1 1 0 ~1.2K | <1

Standard RX 1 1 0 ~1.5K | <1
Fast/streaming TX 1 1 0 ~0.2K | 1
Fast/streaming RX 1 1 0 ~0.2K | 1

Multi-UART TX (8 UARTS) 8 1 0 ~2.9K | 1

Multi-UART RX (8 UARTS) 8 1 0 ~3.4K | 1

Half Duplex 1 1 0 ~1.8K | 1

Software version and dependencies

This document pertains to version 3.0.0 of this library. It is known to work on version 14.1.1 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

e lib_logging (>=2.0.0) e lib_gpio (>=1.0.0)
e lib_xassert (>=2.0.0)

Related application notes

The following application notes use this library:

e ANOO158 - How to use the UART Ibirary
e ANOO159 - How to run large numbers of UARTS
e ANOO163 - Using half duplex UARTS over RS485

Copyright 2015 XMOS Ltd. 1 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

1 External signal description

The UART signals used by the library are high in their idle state. The transmission of a character start
with a start bit when the line transitions from high to low. Then the data bits of the character are then
transmitted followed by an optional parity bit and a number of stop bits (where the line is driven high).
This sequence is shown in Figure 1. The data is driven least significant bit first.

UART Z777 \ /o ¥ b1 ¥ bz X b3 X ba X b5 ¥ be N b7z | party / \

3-—{BIT—b-—tBIT—c-—1BIT- BIT- e 8IT- f BIT- g BIT—h-—LBIT- i BIT- i BIT- k BIT—=1

Figure 1: UART data sequence

The start bit, data bits, parity bit and stop bits are all the same length (tBIT in Figure 1). This length is
give by the BAUD rate which is the number of bits per second.

1.1 Connecting to the xCORE device

If you are using the general UART Rx/Tx components then the UART line can be connected to a bit of
any port. The other bits of the port can be shared using the GPIO library. Please refer to the GPIO library
user guide for restrictions on sharing bits of a port (for example, all bits of a port need to be in the same
direction - so UART rx and UART tx cannot be put on the same port).

xCORE device xCORE device
nbit| | JART rx nbit| | JART tx

port port

Figure 2: UART Rx and Tx connections

The half duplex UART needs to be connected to a 1-bit port.

1-it . | UART
port

Figure 3: UART half duplex connection

xCORE device

Copyright 2015 XMOS Ltd. 2 WWW.Xmos.com
XM006381

XMOS

UART (3.0.0)
The fast/streaming UART also needs to be connect to a 1-bit port for TX or RX.
xCORE device xCORE device
1-bit UART rx 1-bit UART tx
port port

Figure 4: Fast/Streaming UART connections

The multi-UARTs need to be connected to 8-bit ports. If fewer than 8 UARTs are required then an 8-bit
port must still be used with some of the pins of the port not connected.

UART1 rx
xCORE device UART2 rx
8-bit
port
UARTS8 rx
1-bit UART clock

port

UARTT tx
xCORE device UART2 tx
8-bit
port
UARTS8 tx
1-bit UART clock (optional)
port

Figure 5: Multi UART connections

For multi-UART receive, an incoming clock is required to acheive standard baud rates. The clock should
be a multiple of the maximum BAUD rate required e.g. a 1843200Khz oscillator is a multiple of 115200
baud (and lower rates also). The maximum allowable incoming signal is 1843200Khz.

For multi-UART transmit, an incoming clock can also be used. The same clock signal can be shared
between receive and transmit (i.e. only a single 1-bit port need be used).

Copyright 2015 XMOS Ltd.

WWW.XmMOos.com
XM006381

l MOS® UART (3.0.0)

2 Usage

The are four ways to use the UART library detailed in the table below.

UART type

Description

Standard

Fast/streaming

Half-duplex

Multi-UART

Standard UARTs provide a flexible, fully configurable UART for speeds up to 115200
baud. The UART connects to ports via the GPIO library so can be used with single
bits of multi-bit ports. Transmit can be buffered or unbuffered. The UART
components runs on a logical core but are combinable so can be run with other
tasks on the same core (though the timing may be affected).

The fast/streaming UART components provide a fixed configuration fast UART that
streams data in and out via a streaming channel.

The half-duplex component performs receive and transmit on the same data line.
The application controls the direction of the UART at runtime. It is particularly
useful for RS485 connections (link?)

The multi-UART components efficiently run several UARTS on the same core using a
multibit port.

All the UARTs use the XMOS multicore extensions to C (xC) to perform their operations, see the XMOS
Programming Guide (see XM-004440-PC) for more details.

Copyright 2015 XMOS Ltd. 4 WWW.Xmos.com

XM006381

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide

l MOS® UART (3.0.0)

2.1 Standard UART usage

UART components are instantiated as parallel tasks that run in a par statement. The application can con-
nect via an interface connection using the uart_rx_if (for the UART Rx component) or the uart_tx_if
(for the UART Tx component). Both components also have an optional configuration interface that lets
the application change the speed and properties of the UART at run time.

data_ready{) nofification_
app / vart_rx_if > app / vart_tx_if
v vart_config_if (optional) ~

art_config_if (optional) =

Uart RX task layout Uart TX task layout

Figure 6: UART task diagram

For example, the following code instantiates a UART rx and UART tx component and connects to them:

// Port declarations
port p_uart_rx = on tile[0] : XS1_PORT_1A;
port p_uart_tx on tile[0] : XS1_PORT_1B;

#define RX_BUFFER_SIZE 20

int main() {
interface uart_rx_if i_rx;
interface uart_tx_if i_tx;
input_gpio_if i_gpio_rx[1];
output_gpio_if i_gpio_tx[1];
par {
on tile[0]: output_gpio(i_gpio_tx, 1, p_uart_tx, null);
on tile[0]: uart_tx(i_tx, null,
115200, UART_PARITY_NONE, 8, 1,
i_gpio_tx[0]);
on tile[0].core[0] : input_gpio_with_events(i_gpio_rx, 1, p_uart_rx, null);
on tile[0].core[0] : uart_rx(i_rx, null, RX_BUFFER_SIZE,
115200, UART_PARITY_NONE, 8, 1,
i_gpio_rx[0]);
on tile[0]: app(i_tx, i_rx);
}
return 0;

3

The output_gpio task and input_gpio_with_events tasks are part of the GPIO library for flexible use
of multi-bit ports. See the GPIO library user guide for details.

Copyright 2015 XMOS Ltd. 5 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

The application can use the client end of the interface connection to perform UART operations e.g.:

void my_application(client uart_tx_if uart_tx,
client uart_rx_if uart_rx) {
// Write a byte to the UART
uart_tx.write(0xff);

// Wait for a byte to
select {
case uart_rx.data_ready():
uint8_t data = uart_rx.read();
printf('Data received %d\n", data);

break;

2.1.1 UART configuration

The uart_config_if connection can be optionally connected to either the UART Rx or Tx task e.g.:

interface uart_tx_if i_tx;
interface uart_cfg_if i_tx_cfg;
input_gpio_if i_gpio_rx[1];

par {

on tile[0]: uvart_tx(i_tx, i_tx_cfg,
115200, UART_PARITY_NONE, 8, 1,
i_gpio_tx[0]);

on tile[0]: app(i_tx, i_rx_cfg);

The application can use this interface to dynamically reconfigure the UART e.g.:

void app(client uart_tx_if uart_tx,
client uart_config_if uart_tx_cfg) {
// Configure the UART to 9600 BAUD
uart_tx_cfg.set_baud_rate(9600) ;
// Write to the UART
uart_tx.write(0Oxff);

If runtime configuration is not required then null can be passed into the task instead of an interface
connection.

2.1.2 Transmit buffering

There are two types of standard UART tx task: buffered and un-buffered.

The buffered UART will buffer characters written to the UART. It requires a separate logical core to feed
characters from the buffer to the UART pin. This frees the application to perform other processing.

The unbuffered UART does not take its own logical core but calls to write will block until the character
has been sent.

Copyright 2015 XMOS Ltd. 6 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

2.2 Fast/Streaming UART usage

The fast/streaming UART components are instantiated as parallel tasks that run in a par statement. The
can connect via a streaming channel.

UART UART
@ streaming channel @ @ streaming channel @

Streaming Uart RX Streaming Uart TX
task layout task layout

Figure 7: Fast/streaming UART task diagram

For example, the following code instantiates a strreaming UART rx and UART tx component and connects
to them:

// Port declarations
in port p_uart_rx = on tile[0] : XS1_PORT_1A;
out port p_uart_tx = on tile[0] : XS1_PORT_1B;

#define TICKS_PER_BIT 20

int main() {

streaming chan c_rx;

streaming chan c_tx;

par {
on tile[0]: uart_tx_streaming(p_uart_tx, c_tx, TICKS_PER_BIT);
on tile[0]: uart_rx_streaming(p_uart_rx, c_rx, TICKS_PER_BIT);
on tile[0]: app(c_tx, c_rx);

}

return 0;

3

The streaming channel has a limited amount of buffering (~8 characters) but in general the application
must deal with incoming data as soon as it arrives.

The application can interact with the component using the fast/streaming UART functions (see §4) e.g.:

void app(streaming chanend c_tx, streaming chanend c_rx)
{
uart_tx_streaming_write_byte(c_tx, Oxff);
uint8_t byte;
uart_rx_streaming_read_byte(c_rx, byte);
printf("Received: %d\n", byte);

Copyright 2015 XMOS Ltd. 7 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

2.3 Half-duplex UART usage

The half-duplexcomponents are instantiated as parallel tasks that run in a par statement. The application
connects via an three interface connections: the uart_rx_if (for receiving data), the uart_tx_if (for
transmitting data) and the uart_control_if) (for controlling the current direction of the UART). The
component also has an optional configuration interface that lets the application change the speed and
properties of the UART at run time.

vart_rx_if

vart_tx_buffered_if

vart_control_if Half-duplex |
UART ‘

vart_config_if (optional)

Figure 8: Half-duplex UART task diagram

For example, the following code instantiates a half-duplex UART component and connects to it:

#define TX_BUFFER_SIZE 16
#define RX_BUFFER_SIZE 16

port p_uart = on tile[0] : XS1_PORT_1A;

int main() {
interface uart_rx_if i_rx;
interface uart_control_if i_controll;
interface uart_tx_buffered_if i_tx;

par {
on tile[0] : uart_half_duplex(i_tx, i_rx, i_control, null,
TX_BUFFER_SIZE, RX_BUFFER_SIZE,
115200, UART_PARITY_NONE, 8, 1, p_uart);

on tile[0] : app(i_rx, i_tx, i_control);

3

The application can use the interfaces in the same manner as a standard UART. The control interface can
be used to change direction e.qg.:

void app(client uart_rx_if i_uart_rx,
client uart_tx_buffered_if i_uart_tx,
client uart_control_if i_control) {
uint8_t byte;
i_control.set_mode (UART_RX_MODE) ;
byte = i_uart_rx.read();
i_control.set_mode (UART_TX_MODE) ;
i_uart_tx.write(byte);

Copyright 2015 XMOS Ltd. 8 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

2.4 Multi-UART usage

Multi-UART components are instantiated as parallel tasks that run in a par statement. The application
can connect via a combination of a channel and an interface connection using the multi_uart_rx_if
(for the UART Rx component) or the muTti_uart_tx_if (for the UART Tx component). These interfaces
handle data for all the UARTS and runtime configuration.

Multi- llj/lpl\lllz\sl_}
a i i - UART app multi_vart_tx_i
PP / multi_vart_rx_if RX / Iti_vart_tx_if X
streaming channel —~—— channel

Multi-UART RX task Multi-UART TX task
layout layout

Figure 9: Multi-UART task diagram

For example, the following code instantiates a multi-UART RX and multi-UART TX component and connects
to them:

in buffered port:32 p_uart_rx = XS1_PORT_8A;
out buffered port:8 p_uart_tx = XS1_PORT_8B;
in port p_uart_clk = XS1_PORT_1F;

clock clk_uart = XS1_CLKBLK_4;

int main(void)
{
interface multi_uart_rx_if i_rx;
streaming chan c_rx;
chan c_tx;
interface multi_uart_tx_if i_tx;

// Set the rx and tx lines to be clocked off the clk_uart clock block
configure_in_port(p_uart_rx, clk_uart);
configure_out_port(p_uart_tx, clk_uart, 0);

// Configure an external clock for the clk_uart clock block
configure_clock_src(clk_uart, p_uart_clk);
start_clock(clk_uart);

// Start the rx/tx tasks and the application task

par {
multi_uart_rx(c_rx, i_rx, p_uart_rx, 8, 1843200, 115200, UART_PARITY_NONE, 8, 1);
multi_uart_tx(c_tx, i_tx, p_uart_tx, 8, 1843200, 115200, UART_PARITY_NONE, 8, 1);
app(c_rx, i_rx, c_tx, i_tx);

Copyright 2015 XMOS Ltd. 9 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

The application communicates with all the UARTSs via the single multi-UART interfaces e.g.:

void Toopback(streaming chanend c_rx, client multi_uart_rx_if i_rx,
chanend c_tx, client multi_uart_tx_if i_tx)

{

size_t uart_num;

// Configure each task with a chanend
i_rx.init(c_rx);
i_tx.init(c_tx);

while (1) {
select {
case multi_uart_data_ready(c_rx, uart_num):
uint8_t data;
if (i_rx.read(uart_num, data) == UART_RX_VALID_DATA) {
if (i_tx.is_slot_free(uart_num)) {
i_tx.write(uart_num, data);

}
else {
debug_printf("Warning: TX buffer overflow on channel %d\n",
uart_num);
}
}
break;

3
3
}

Note that the init function on the interface must be called once before any use of the interface.
2.4.1 Configuring clocks for multi-UARTs

The ports used for the multi-UART components need to have their clocks configured. For example, the
following code configures the multi-UART RX port to run of a clock that is sourced by an incoming port:

// Set the rx Tine to be clocked off the clk_uart clock block
configure_in_port(p_uart_rx, clk_uart);

// Configure an external clock for the clk_uart clock block
configure_clock_src(clk_uart, p_uart_clk);
start_clock(clk_uart);

For more information on configuring ports, please refer to the XMOS Programming Guide (see XM-004440-
PC) for more details.

The multi-UART components take an argument which is the speed of the underlying clock. This way the
component can attain the correct BAUD rate.

The multi-UART RX component must be clocked of a rate which is a multiple of the BAUD rates required.

If a port is not explicitly configured, then it will be clocked of the reference 100Mhz clock of the xCORE.
The TX component can also work with this clock rate.

Copyright 2015 XMOS Ltd. 10 WWW.Xmos.com
XM006381

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide
http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide

l MOS® UART (3.0.0)

2.4.2 Runtime configuration of the Multi-UARTs

The re-configuration of a one of the UARTS in the multi-UART is done via the main multi_uart_tx_if
or multi_uart_rx_if. In both cases, the user must call the pause function of the interface, then a
reconfiguration function and then the restart function e.g.:

void app(streaming chanend c_rx, client multi_uart_rx_if i_rx)

i_rx.pause();

// Set UART number 2 to baud rate 9600
i_rx.set_baud_rate(2, 9600);
i_rx.restart(Q;

Copyright 2015 XMOS Ltd. 11 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

3 Standard UART API

3.1 UART configuration interface

Type uart_config_if

Description | UART configuration interface.
This interface enables dynamic reconfiguration of a UART. It is used by several UART
components to provide a method of configuration.

Functions
Function set_baud_rate
Description Set the baud rate of a UART.
Type void set_baud_rate(unsigned baud_rate)
Function set_parity
Description Set the parity of a UART.
Type void

set_parity(enum uart_parity_t parity)

Function set_stop_bits

Description Set number of stop bits used by a UART.

Type void set_stop_bits(unsigned stop_bits)
Function set_bits_per_byte

Description Set number of bits per byte used by a UART.
Type void set_bits_per_byte(unsigned bpb)

Copyright 2015 XMOS Ltd. 12 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

Type uart_parity_t

Description | Type representing the parity of a UART.

Values UART_PARITY_EVEN
Even parity.

UART_PARITY_ODD
Odd parity.

UART_PARITY_NONE
No parity.

Copyright 2015 XMOS Ltd. 13 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

3.2 UART receiver component

Function uart_rx

Description | UART RX.

This function runs a uart receiver. Bytes received by the this task are buffered. When
the buffer is full further incoming bytes of data will be dropped. The function never
returns and will run indefinitely.

Type [[combinable]]

void

uart_rx(server interface uart_rx_if i_data,
server interface uart_config_if ?i_config,
const static unsigned buffer_size,
unsigned baud,
enum uart_parity_t parity,
unsigned bits_per_byte,
unsigned stop_bits,
client input_gpio_if p_rxd)

Parameters | j_data the interface connection allowing clients to receive data
i_config the interface connection allowing clients to reconfigure the UART

buffer_size
the size of the buffer

baud the initial baud rate
parity the intiial parity setting

bits_per_byte
the initial number of bits per byte

stop_bits the intiial number of stop bits

p_rxd the gpio interface to input data on

Copyright 2015 XMOS Ltd. 14 WWW.Xmos.com
XM006381

XMOS

UART (3.0.0)

3.3 UART receive interface

Type uart_rx_if
Description | UART RX interface.
This interface provides clients access to buffer uart receive functionality.
Functions
Function read
Description Get a byte from the receive buffer.
This function should be called after receiving a data_ready ()
notification. If these is no data in the buffer (for example, this
function is called before receiving a notification) then the return
value is undefined.
Type [[clears_notification]]
uint8_t read(void)
Function data_ready
Description Notification that data is in the receive buffer.
This notification function can be selected on by the client and
will event when the is data in the receive buffer. After this
notification the client should call the read() function.
Type [[notification]]
slave void data_ready(void)
Function has_data
Description Returns whether there is data in the buffer.
Type int has_data()
Function wait_for_data_and_read
Description Get a byte from the receive buffer.
This function will wait until there is data in the receive buffer
of the uart and then fetch that data. On getting the data, it will
clear the notification flag on the interface.
Type uint8_t wait_for_data_and_read()

Copyright 2015 XMOS Ltd. 15

WWW.XmMOos.com
XM006381

XMOS

UART (3.0.0)

3.4 UART transmitter components

Function uart_tx

Description | UART transmitter.
This function implements an unbuffered UART transmitter.

Type [[distributable]]

void

uart_tx(server interface uart_tx_if i_data,
server interface uart_config_if ?i_config,
unsigned baud,
uart_parity_t parity,
unsigned bits_per_byte,
unsigned stop_bits,
client output_gpio_if p_txd)

Parameters | i_data interface enabling client to send data.
i_config interface enabling client to configure the UART.
baud the initial baud rate.

parity the intiial parity setting.

bits_per_byte
the initial number of bits per byte.

stop_bits the intiial number of stop bits.

p_txd the gpio interface to output data on.

Copyright 2015 XMOS Ltd. 16

WWW.XmMOos.com
XM006381

XMOS

UART (3.0.0)

Function

uart_tx_buffered

Description

UART transmitter (buffered).

This function implements a UART transmitter. Data sent to the task will be placed in

a buffer and sent at the rate of the UART.

Type

[[combinable]]
void

uart_tx_buffered(server interface uart_tx_buffered_if i_data,

server interface uart_config_if ?i_config,
const static unsigned buffer_size,
unsigned baud,

uart_parity_t parity,

unsigned bits_per_byte,

unsigned stop_bits,

client output_gpio_if p_txd)

Parameters

i_data interface enabling client to send data.
i_config interface enabling client to configure the UART.

buffer_size
the size of the transmit buffer in bytes.

baud the initial baud rate.
parity the intiial parity setting.

bits_per_byte
the initial number of bits per byte.

stop_bits the intiial number of stop bits.

p_txd the gpio interface to output data on.

Copyright 2015 XMOS Ltd. 17

WWW.XmMOos.com
XM006381

l MOS® UART (3.0.0)

3.5 UART transmit interface

Type uart_tx_if

Description | UART transmit interface.
This interface provides functions for transmitting data on an unbuffered UART.

Functions

Function write

Description Write a byte to a UART.
This function writes a byte of data to a UART. It will output
immediately and block until the data is output.

Type void write(uint8_t data)

Parameters data The data to write.

Copyright 2015 XMOS Ltd. 18 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

3.6 UART transmit interface (buffered)

Type uart_tx_buffered_if
Description | UART transmit interface (buffered).
This interface contains functions to write to a buffered UART and manage the buffer-
ing.
Functions
Function write
Description Write a byte to a UART.
This function writes a byte of data to a UART. It will place the
data in the output buffer queue to write and then return. If the
buffer is full then the data is discarded.
Type [[clears_notification]]
int write(uint8_t data)
Parameters data The data to write.
Returns non-zero if the write was succesfully. If the buffer was full then
the function will return zero.
Function ready_to_transmit
Description Ready to transmit notification.
This notification will occur when the UART is ready to transmit
(either intially or after awrite() call when there is space in the
buffer).
Type [[notification]]
slave void ready_to_transmit(void)
Function get_available_buffer_size
Description Get avaiable buffer size.
This function returns the number of bytes remaining in the
buffer that can be filled by write() calls.
Type size_t get_available_buffer_size(void)

Copyright 2015 XMOS Ltd. 19 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

4 Fast/Streaming API

4.1 Streaming receiver

Function uart_rx_streaming

Description | Fast/Streaming UART RX.

This function implements a fast UART. The UART configuration is fixed to a single
start bit, 8 bits per byte, and a single stop bit. On a 62.5 MIPS thread this function
should be able to keep up with a 10 MBit UART sustained (provided that the streaming
channel can keep up with it too).

This function does not return.

Type void uart_rx_streaming(in port p,
streaming chanend c,
int ticks_per_bit)

Parameters | p input port, 1 bit port on which data comes in.
C output streaming channel to connect to the application.

ticks_per_bit
number of clock ticks between bits. This number depends on the clock
that is attached to port p. If it is the 100 Mhz reference clock then this
value should be at least 10.

Function uart_rx_streaming_read_byte

Description | Receive a byte from a streaming UART receiver.
This function receives a byte from the fast/streaming UART component. It is “select
handler” so can be used within a select e.g.

uint8_t byte;

size_t 1index;

select {

case uart_rx_streaming_receive_byte(c, byte):
// use sample and index here...

break;

The case in this select will fire when the UART component has data ready.

Type void
uart_rx_streaming_read_byte(streaming chanend c,
uint8_t &data)

Parameters | ¢ chanend connected to the streaming UART receiver component

data This reference parameter gets set with the incoming data

Copyright 2015 XMOS Ltd. 20 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

4.2 Streaming transmitter

Function uart_tx_streaming

Description | Fast/Streaming UART TX.

This function implements a fast UART transmitter. It needs an unbuffered 1-bit port, a
streaming channel end, and a number of port-clocks to wait between bits. It receives
a start bit, 8 bits, and a stop bit, and transmits the 8 bits over the streaming channel
end as a single token. On a 62.5 MIPS thread this function should be able to keep up
with a 10 MBit UART sustained (provided that the streaming channel can keep up with
it too).

This function does not return.

Type void uart_tx_streaming(out port p,
streaming chanend c,
int ticks_per_bit)

Parameters | p input port, 1 bit port on which data comes in.
C output streaming channel to connect to the application.

ticks_per_bit
number of clock ticks between bits. This number depends on the clock
that is attached to port p. If it is the 100 Mhz reference clock then this
value should be at least 10.

Function uart_tx_streaming_write_byte

Description | Write a byte to a streaming UART transmitter.
This function writes a

Type void
uart_tx_streaming_write_byte(streaming chanend c,
uint8_t data)

Parameters | ¢ chanend connected to the streaming UART Tx component

data The data to send.

Copyright 2015 XMOS Ltd. 21 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

5 Half-Duplex API

5.1 Half-duplex component

Function uart_half_duplex

Description | Half duplex UART.

This function implements a UART that can either transmit or receive on the same wire.
The application explicitly control whether the component is in transmit or receive
mode.

Type void

uart_half_duplex(server interface uart_tx_buffered_if i_tx,
server interface uart_rx_if 1i_rx,
server interface uart_control_if i_control,
server interface uart_config_if ?i_config,
const static unsigned tx_buf_length,
const static unsigned rx_buf_length,
unsigned baud,
uart_parity_t parity,
unsigned bits_per_byte,
unsigned stop_bits,
port p_uart)

Parameters | ji_tx interface for transmitting data.

i_rx interface for receiving data.
i_control interface for controlling the direction of the UART.
i_config interface for configuring the UART.

tx_buf_Tength
the size of the transmit buffer (in bytes).

rx_buf_Tength
the size of the receive buffer (in bytes).

baud baud rate.
parity the parity of the UART.

bits_per_byte
bits per byte.

stop_bits The number of stop bits (0,1 or 2)

p_uart the 1-bit port to send/recieve the UART signals.

Copyright 2015 XMOS Ltd. 22 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

5.2 Half-duplex control interface

Type uart_half_duplex_mode_t

Description | Type representing the mode (direction) of a uart.

Values UART_RX_MODE
Uart is in receive mode.

UART_TX_MODE
Uart is in transmit mode.

Type uart_control_if
Description | Interface to control the mode of a half-duplex UART.

Functions

Function set_mode

Description Set the mode of the UART.
This function can be used to control whether the UART is in
send or receive mode.

Type void
set_mode(uart_half_duplex_mode_t mode)

Copyright 2015 XMOS Ltd. 23 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

6 Multi-UART API

6.1 Multi-UART receiver

Function multi_uart_rx

Description | Multi-UART receiver.

This function implements multiple UART receivers on a multi-bit port. The UARTS all
have the same baud rate. The parity, bits per byte and number of stop bits is the
same for all UARTs and cannot be changed dynamically.

Type void multi_uart_rx(streaming chanend c,

server interface multi_uart_rx_if 1,
in buffered port:32 p,

clock clk,

Size_t num_uarts,

unsigned clock_rate_hz,

unsigned baud,

enum uart_parity_t parity,

unsigned bits_per_byte,

unsigned stop_bits)

Parameters | ¢ a chanend used internally for high speed communication
i the interface for getting data from the task.
p the multibit port.
clk a clock block for the component to use. This needs to be set to run of

the reference clock (the default state for clock blocks).
num_uarts the number of uarts to run (must be less than or equal to the width of)

clock_rate_hz
the clock rate in Hz

baud baud rate.
parity the parity of the UART.

bits_per_byte
bits per byte.

stop_bits number of stop bits.

Copyright 2015 XMOS Ltd. 24 WWW.Xmos.com
XM006381

XMOS

UART (3.0.0)
6.2 Multi-UART receive interface
Type multi_uart_read_result_t
Description
Values UART_RX_VALID_DATA
Data received is valid.
UART_RX_INVALID_DATA
Data received is not valid.
Type multi_uart_rx_if
Description | Multi-UART receive interface.
Functions
Function init
Description Initialize the multi-UART RX component.
Type void init(streaming chanend c)
Parameters C The chanend connected to the multi-UART RX task
Function read
Description Read a byte for the next UART with ready data.
This function will read out a byte from the next UART with data
available. If several UARTS have data available then the data is
read out in a round-robin fashion.
Type enum multi_uart_read_result_t read(size_t index,
uint8_t &data)
Parameters index This index of the UART to read from.
data The data byte read
Returns An enum type that indicates if the data is valid

Continued on next page

Copyright 2015 XMOS Ltd. 25

WWW.XmMOos.com
XM006381

l MOS® UART (3.0.0)

Type multi_uart_rx_if (continued)
Function pause
Description Pause the multi-UART RX component for reconfiguration.

This call will stop the mulit-UART component so that the UARTSs
can be reconfigured.

Type void pause()
Function restart
Description Restart the multi-UART RX component after reconfiguration.

This call will restart the multi-UART component.

Type void restart()
Function set_baud_rate
Description Set the baud rate of a UART.

This call will set the baud rate of one of the UARTs. The rate
must be a divisor of the clock rate of the underlying clock used
for the component.

Type void set_baud_rate(size_t index,
unsigned baud_rate)

Parameters index The index of the UART to configure.

baud_rate The required baud rate

Function set_parity

Description Set parity of a UART.

This call will set the parity of one of the UARTs. The rate must
be a divisor of the clock rate of the underlying clock used for
the component.

Type void set_parity(size_t index,
enum uart_parity_t parity)

Parameters index The index of the UART to configure.

parity The required parity

Continued on next page

Copyright 2015 XMOS Ltd. 26 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

Type multi_uart_rx_if (continued)
Function set_stop_bits
Description Set the number of stop bits of a UART.

This call will set the number of stop bits of one of the UARTSs.

Type void set_stop_bits(size_t index,
unsigned stop_bits)

Parameters index The index of the UART

stop_bits The number of stop bits (0,1 or 2)

Function set_bits_per_byte

Description Set the number of bit per byte of a UART.
This call will set the number of stop bits of one of the UARTSs.

Type void set_bits_per_byte(size_t index, unsigned bpb)
Parameters index The index of the UART
bpb The number of bits per byte (5,6,7 or 8)

Copyright 2015 XMOS Ltd. 27 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

6.3 Multi-UART transmitter

Function multi_uart_tx

Description | Multi-UART transmitter.

This function implements multiple UART transmiiters on a multi-bit port. The UARTS
all have the same baud rate. The parity, bits per byte and number of stop bits is the
same for all UARTs and cannot be changed dynamically.

Type void multi_uart_tx(chanend c,

server interface multi_uart_tx_if 1,
out port p,

size_t num_uarts,

unsigned clock_rate_hz,

unsigned baud,

uart_parity_t parity,

unsigned bits_per_byte,

unsigned stop_bits)

Parameters | a chanend used internally for high speed communication
i the interface for sending data to the task.
p the multibit port.

num_uarts the number of uarts to run (must be less than or equal to the width of)

clock_rate_hz
the clock rate in Hz

baud baud rate.
parity the parity of the UART.

bits_per_byte
bits per byte.

stop_bits number of stop bits.

Copyright 2015 XMOS Ltd. 28 WWW.Xmos.com
XM006381

XMOS

UART (3.0.0)
6.4 Multi-UART transmit interface
Type multi_uart_tx_if
Description | Multi-UART transmit interface.
Functions
Function init
Description Initialize the multi-UART TX component.
Type void init(chanend c)
Parameters C The chanend connected to the multi-UART TX task
Function is_slot_free
Description Check whether transmit slot is free.
This function checks whether the application can write data to
a specific UART.
Type int is_slot_free(size_t index)
Parameters index The index of the UART to check.
Returns non-zero if the slot is free (i.e. data can be sent).
Function write
Description Write to a UART.
This function writes a byte of data to a UART. This byte will be
buffered to send. If the transmit buffer for that UART is not
available then the data is ignored (use is_tx_slot_free() to
determine availability).
Type void write(size_t index, uint8_t data)
Parameters index The index of the UART to write to.
data The data to write.

Continued on next page

Copyright 2015 XMOS Ltd. 29

WWW.XmMOos.com
XM006381

XMOS

UART (3.0.0)

Type multi_uart_tx_if (continued)

Function pause

Description Pause the multi-UART RX component for reconfiguration.
This call will stop the mulit-UART component so that the UARTSs
can be reconfigured.

Type void pause()

Function restart

Description Restart the multi-UART RX component after reconfiguration.
This call will restart the multi-UART component.

Type void restart()

Function set_baud_rate

Description Set the baud rate of a UART.
This call will set the baud rate of one of the UARTs. The rate
must be a divisor of the clock rate of the underlying clock used
for the component.

Type void set_baud_rate(size_t index,

unsigned baud_rate)

Parameters index The index of the UART to configure.
baud_rate The required baud rate

Function set_parity

Description Set parity of a UART.
This call will set the parity of one of the UARTs. The rate must
be a divisor of the clock rate of the underlying clock used for
the component.

Type void set_parity(size_t index,

enum uart_parity_t parity)

Parameters index The index of the UART to configure.

parity The required parity

Continued on next page

. __|
Copyright 2015 XMOS Ltd. 30

WWW.XmMOos.com
XM006381

l MOS® UART (3.0.0)

Type multi_uart_tx_if (continued)
Function set_stop_bits
Description Set the number of stop bits of a UART.

This call will set the number of stop bits of one of the UARTSs.

Type void set_stop_bits(size_t index,
unsigned stop_bits)

Parameters index The index of the UART

stop_bits The number of stop bits (0,1 or 2)

Function set_bits_per_byte

Description Set the number of bit per byte of a UART.
This call will set the number of stop bits of one of the UARTSs.

Type void set_bits_per_byte(size_t index, unsigned bpb)
Parameters index The index of the UART
bpb The number of bits per byte (5,6,7 or 8)

Copyright 2015 XMOS Ltd. 31 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

APPENDIX A - Known Issues

No known issues.

Copyright 2015 XMOS Ltd. 32 WWW.Xmos.com
XM006381

l MOS® UART (3.0.0)

APPENDIX B - UART Library Change Log

B.1 3.0.1

e Update fast rx and tx to match API prototypes & fix port directions
e Fixed order of ports in api calls from example program

B.2 3.0.0

e Restructued version
B.3 2.3.2

e Increment version for XPD release. Several minor docs bugs fixed.
B4 2.3.1

e Tidied up uart_fast and targetted demo at L16 sliceKIT
B.5 3.0.0

e Major change to generic UART tx/rx components to use new xC features with different api.
B.6 2.3.0

e Added RS485 component and apps
B.7 2.2.0

e Updated documents for xSOFTip requirements
e Added metainfo and XPD items

B.8 2.1.0

e Documentation Updates

XMOS

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 33 WWW.Xmos.com
XM006381

	UART library
	External signal description
	Connecting to the xCORE device

	Usage
	Standard UART usage
	UART configuration
	Transmit buffering

	Fast/Streaming UART usage
	Half-duplex UART usage
	Multi-UART usage
	Configuring clocks for multi-UARTs
	Runtime configuration of the Multi-UARTs

	Standard UART API
	UART configuration interface
	UART receiver component
	UART receive interface
	UART transmitter components
	UART transmit interface
	UART transmit interface (buffered)

	Fast/Streaming API
	Streaming receiver
	Streaming transmitter

	Half-Duplex API
	Half-duplex component
	Half-duplex control interface

	Multi-UART API
	Multi-UART receiver
	Multi-UART receive interface
	Multi-UART transmitter
	Multi-UART transmit interface

	Known Issues
	UART Library Change Log
	3.0.1
	3.0.0
	2.3.2
	2.3.1
	3.0.0
	2.3.0
	2.2.0
	2.1.0

