
lib_xua: USB Audio components library

Publication Date: 2025/7/8
Document Number: XM-012296-UG v5.1.0

lib_xua: USB Audio components library

IN THIS DOCUMENT

1 Overview . 4
2 Software architecture . 6
3 Basic Usage . 9

3.1 Library Structure . 9
3.2 Using in an application . 9
3.3 “Codeless” programming model . 9
3.4 Extending the “Codeless” application . 10
3.5 Configuring lib_xua . 11
3.6 User functions . 11

4 Options . 12
4.1 Strings and IDs . 12
4.2 Code Location . 13
4.3 Channel counts and sample rates . 14
4.4 USB Audio Class version . 15
4.5 Synchronisation . 18
4.6 I²S/TDM . 20
4.7 S/PDIF transmit . 21
4.8 S/PDIF receive . 22
4.9 ADAT transmit . 23
4.10 ADAT receive . 24
4.11 MIDI . 25
4.12 PDM microphones . 26
4.13 Mixer . 27
4.14 Direct Stream Digital (DSD) . 28
4.15 DFU . 30
4.16 Audio stream formats . 31
4.17 Other options . 34

5 Advanced usage . 35
5.1 Core hardware resources . 35
5.2 Running the core components . 37
5.3 I²S/TDM . 38
5.4 Mixer . 39

6 Additional features . 40
6.1 S/PDIF transmit . 40
6.2 S/PDIF receive . 41
6.3 ADAT transmit . 41
6.4 ADAT receive . 46

7 Implementation detail . 48
7.1 Audio Hub and I²S . 49
7.2 Endpoint 0: Management and control . 52
7.3 Audio endpoints (Endpoint Buffer and Decoupler) 54
7.4 XMOS USB Device (XUD) library . 58
7.5 External clock recovery (Clock Gen) . 59
7.6 Digital mixer . 60
7.7 S/PDIF transmit . 67
7.8 S/PDIF receive . 68
7.9 MIDI . 71
7.10 PDM microphones . 72
7.11 Audio controls via Human Interface Device (HID) 74
7.12 Device Firmware Upgrade (DFU) over USB . 74
7.13 Resource usage . 80

8 API reference . 81
8.1 Configuration defines . 81
8.2 User function definitions . 90
8.3 Component API . 92

2

lib_xua: USB Audio components library

3

lib_xua: USB Audio components library

1 Overview

lib_xua contains shared components for use in the XMOS USB Audio (XUA) Reference
Designs.

These components enable the development of USB Audio devices on the XMOS xcore
architecture.

This document describes the structure of lib_xua, its use and resources required. It
also covers some implementation detail.

This document assumes familiarity with the XMOS xcore architecture, the Universal Se-
rial Bus 2.0 Specification (and related specifications), the XMOS tool chain and XC lan-
guage.

Functionality

Provides USB interface to audio I/O.

Supported Standards

USB
USB 2.0 (Full-speed and High-speed)
USB Audio Class 1.0
USB Audio Class 2.0
USB Firmware Upgrade (DFU) 1.1
USB Midi Device Class 1.0

Audio
I2S/TDM (16/32-bit)
S/PDIF
ADAT
Direct Stream Digital (DSD)
PDM Microphones
MIDI

Supported Sample Frequencies

44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, 192kHz, 352.8kHz, 384kHz

Supported Devices

XMOS Devices
xcore-200 Series
xcore.ai Series

4

https://www.usb.org/sites/default/files/audio10.pdf
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
http://www.usb.org/sites/default/files/DFU_1.1.pdf
http://usb.org/sites/default/files/midi10.pdf

lib_xua: USB Audio components library

Requirements

Development Tools XMOS XTC Development Tools (see README for
version)

USB xcore device with integrated USB phy (external phy
not supported)

Audio External audio DAC/ADC/CODECs (and required
supporting componentry) supporting I2S/TDM

Boot/Storage Compatible SPI/QSPI Flash device (or xcore device
with internal flash)

Licensing and Support

Reference code provided without charge under license from XMOS.

Please visit http://www.xmos.com/support for support.

Reference code is maintained by XMOS Limited.

5

http://www.xmos.com/support

lib_xua: USB Audio components library

2 Software architecture

This section describes the required software architecture of a USB Audio device imple-
mented using lib_xua, its dependencies and other supporting libraries.

lib_xua provides fundamental building blocks for producing USB Audio products on
XMOS devices. Every system is required to have the components from lib_xua listed
in Table 1.

Table 1: Required XUA Components

Component Description

Endpoint 0 Provides the logic for Endpoint 0 which handles
enumeration and control of the device including
DFU related requests.

Endpoint buffer Buffers endpoint data packets to and from the
host. Manages delivery of audio packets be-
tween the endpoint buffer component and the au-
dio components. It can also handle volume con-
trol processing. Note, this currently utilises two
cores

AudioHub Handles audio I/O over I2S and manages audio
data to/from other digital audio I/O components.

In addition low-level USB I/0 is required and is provided by the external dependency
lib_xud.

Table 2: Required external components

Component Description

XMOS USB Device Driver (XUD) Handles the low level USB I/O.

In addition Table 3 shows optional components that can be added/enabled from within
lib_xua

Table 3: Optional Components

Component Description

Mixer Allows digitalmixing of input and output channels.
It can also handle volume control instead of the
decoupler.

Clockgen Drives an external frequency generator (PLL) and
manages changes between internal clocks and
external clocks arising from digital input. On
xcore.ai Clockgen may also work in conjunction
with lib_sw_pll to produce a local clock from the
XCORE which is locked to the incoming digital
stream.

MIDI Outputs and inputs MIDI over a serial UART inter-
face.

6

lib_xua: USB Audio components library

lib_xua also provides optional support for integrating with the following external depen-
dencies listed in Table 4

Table 4: Optional external components

Component Description

S/PDIF Transmitter (lib_spdif) Outputs samples on an S/PDIF digital audio inter-
face.

S/PDIF Receiver (lib_spdif
<www.xmos.com/file/lib_spdif>)

Inputs samples off an S/PDIF digital audio inter-
face (requires the clockgen component).

ADAT Transmitter (lib_adat) Outputs samples on an ADAT digital audio inter-
face.

ADAT Receiver (lib_adat) Inputs samples off an ADAT digital audio interface
(requires the clockgen component).

PDM Microphones
(lib_mic_array)

Receives PDM data from microphones and per-
forms PDM to PCM conversion

Fig. 1: USB Audio thread diagram

Fig. 1 shows how the components interact with each other in a typical system. The green
circles represent threads with arrows indicating inter-thread communications.

7

lib_xua: USB Audio components library

8

lib_xua: USB Audio components library

3 Basic Usage

This section describes the basic usage of lib_xua and provides a guide on how to program
USB Audio devices.

3.1 Library Structure

The code is split into several directories.

Table 5: lib_xua structure

core Common code for USB audio applications
midi MIDI I/O code
dfu Device Firmware Upgrade code
hid Human Interface Device code

Note, the midi and dfu directories are potential candidates for separate libs in their own
right.

3.2 Using in an application

lib_xua is intended to be used with XCommon CMake , the XMOS application build and
dependency management system.

To use lib_xua in an application, add lib_xua, to the list of dependent modules in the
application’s CMakeLists.txt file.

set(APP_DEPENDENT_MODULES “lib_xua”)

All lib_xua functions can be accessed via the xua.h header file:
#include <xua.h>

3.3 “Codeless” programming model

Whilst it is possible to code a USB Audio device using the building blocks provided by
lib_xua, it is realised that this might not be desirable for many classes of customers or
products.

For instance, some users may not have a large software development experience and
simply want to customise some basic settings such as strings, sample-rates, channel-
counts etc. Others may want to fully customise the implementation - adding additional
functionality such as integrating DSP or possibly only using a subset of the functions
provided - just XUA_AudioHub, for example.

In addition, the large number of supported features can lead to a large number of tasks,
hardware resources, communication channels etc, requiring quite a lot of code to be
authored for each product.

In order to cater for the former class of users, a “codeless” option is provided. Put simply,
a file main.xc is provided which includes a pre-authored main() function along with all
of the required hardware resource declarations. Code is generated based on the options
provided by the developer in xua_conf.h.

9

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_xua: USB Audio components library

Using this development model the user simply includes a xua_conf.h with their set-
tings and optional implementations of any ‘user functions’ as desired. This, along with
an XN file for their hardware platform, is all that is required to build a fully featured and
functioning product. This XN file should contain definitions of the ports used for the
various lib_xua functionality, see Options.

This development model also provides the benefit of a full and verified codebase as a
basis for a product.

This behaviour described in this section is the default behaviour of lib_xua, to disable
this please set EXCLUDE_USB_AUDIO_MAIN to 1 in the application CMakeLists.txt or
xua_conf.h and see Advanced usage.

3.4 Extending the “Codeless” application

The main.xc function allows insertion of extra code using the preprocessor. For exam-
ple, you may wish to add some control code to control buttons or LEDs or DSP tasks for
audio enhancement.

Adding globals

To add globals to your application, you may declare them in a dedicated source file in
your project. They may then be referenced from other files using the extern keyword.

Alternatively, you may add an optional header file to your project called
user_main_globals.h. If this file exists, its contents will be inserted into main.xc
in global scope.

Example contents of user_main_globals.h:
unsigned my_global_var = 42;

Adding main function declarations

To add declarations to your application, for example channels or interfaces to con-
nect between tasks, you can define the token USER_MAIN_DECLARATIONS from your
xua_conf.h configuration file. This inserts the macro inside main.xc after main()
but before the main par statement.

Alternatively, you may add an optional header file to your project called
user_main_declarations.h. If this file exists, its contents will be inserted
into main.xc before the main par statement.

Example contents of user_main_declarations.h:
chan c_usb_to_user_interface;

Adding main function tasks

To add extra tasks to your application, you can define the token USER_MAIN_CORES
from your xua_conf.h configuration file. This inserts the macro inside main.xc af-
ter the main par statement meaning the compiler will run these tasks in parallel, either
on a dedicated hardware thread or combine with other tasks if the task is marked as
[[combinable]].

Alternatively, you may add an optional header file to your project called
user_main_cores.h. If this file exists, its contents will be inserted into main.
xc after the main par statement.

10

lib_xua: USB Audio components library

Example contents of user_main_cores.h:
on tile[1]: my_user_interface_task(c_usb_to_user_interface);

3.5 Configuring lib_xua

Configuration of the various build time options of lib_xua is done via the optional
header xua_conf.h. To allow the build scripts to locate this file it should reside some-
where in the application src directory.

Such build time options include audio class version, sample rates, channel counts etc.
Please see API reference for full listings.

The build system will automatically include the xua_conf.h header file as appropriate -
the developer should continue to include xua.h as previously directed. A simple example
xua_conf.h file is shown below:
#ifndef _XUA_CONF_H_
#define _XUA_CONF_H_

/* Output channel count */
#define XUA_NUM_USB_CHAN_OUT (2)

/* Product string */
#define XUA_PRODUCT_STR_A2 "My Product"

#endif

3.6 User functions

To enable custom functionality, such as configuring external audio hardware, bespoke
behaviour on stream start/stop etc, various functions can be overridden by the user. (see
API reference for full listings). The default implementations of these functions are empty.

11

lib_xua: USB Audio components library

4 Options

This section describes key options of lib_xua. These are typically controlled using
build time defines. Where something must be defined, it is recommended this is done in
xua_conf.h but could also be done in the application CMakeLists.txt.

For full details of all options please see API reference.

4.1 Strings and IDs

The codebase includes various strings and IDs that should be customised to match the
product requirements. These are listed in Table 6.

The Vendor ID (VID) should be acquired from the USB Implementers Forum
(www.usb.org).

Warning

Under no circumstances should the XMOS VID or any other VID be used without
express permission.

The VID and Product ID (PID) pair must be unique to each product, otherwise driver in-
compatibilities may arise.

Table 6: String & ID defines

Define Description Default

VENDOR_STR Name of vendor/manufacturer, note
the is appended to various strings.

"XMOS"

PRODUCT_STR_A2 Nameof the productwhen running in
Audio Class 2.0 mode

"XMOS xCORE (UAC2.0)"

PRODUCT_STR_A1 Nameof the productwhen running in
Audio Class 1.0 mode

"XMOS xCORE (UAC1.0)"

PID_AUDIO_2 Product ID when running in Audio
Class 2.0 mode

0x0002

PID_AUDIO_1 Product ID when running in Audio
Class 1.0 mode

0x0003

12

lib_xua: USB Audio components library

4.2 Code Location

When designing a system there is a choice as to which hardware resources to use for
each interface. In a multi-tile system the codebase needs to be informed as to which
tiles to use for these hardware resources and associated code.

A series of defines are used to allow the programmer to easily move code between tiles.
Arguably the most important of these are AUDIO_IO_TILE and XUD_TILE. Table 7
shows a full listing of these TILE defines.

Table 7: Tile defines

Define Description Default

AUDIO_IO_TILE Tile on which I2S/TDM, ADAT Rx,
S/PDIF Rx & mixer resides

0

XUD_TILE Tile on which USB resides, includ-
ing buffering for all USB inter-
faces/endppoints

0

MIDI_TILE Tile on which MIDI resides Same as AUDIO_IO_TILE
SPDIF_TX_TILE Tile on which S/PDIF Tx resides Same as AUDIO_IO_TILE
PDM_TILE Tile on which PDM microphones re-

sides
Same as AUDIO_IO_TILE

PLL_REF_TILE Tile on which reference signal to
CS2100 resides

Same as AUDIO_IO_TILE

Note

It should be ensured that the relevant port defines in the application XN file match
the code location defines

13

lib_xua: USB Audio components library

4.3 Channel counts and sample rates

lib_xua is fully configurable in relation to channel counts and sample rates. Practical
limitations of these are normally based onUSBpacket size restrictions and I/O availablity.

For example, the maximum packet size for high-speed USB is 1024 bytes, limiting the
channel count to 10 channels for a device running at 192kHz with 32bit sample depth.

The defines in Table 8 set the channel counts exposed to the USB host.

Table 8: Channel count defines

Define Description Default

NUM_USB_CHAN_OUT Number of output channels the de-
vice advertises to the USB host

N/A (must be defined)

NUM_USB_CHAN_IN Number of input channels the device
advertises to the USB host

N/A (must be defined)

Sample rates ranges are set by the defines in Table 9. The codebase will automatically
populate the device sample rate list with popular frequencies between the min and max
values. All values are in Hz:

Table 9: Sample rate defines

Define Description Default

MAX_FREQ Maximum supported sample rate (Hz) 192000
MIN_FREQ Minimum supported sample rate (Hz) 44100
DEFAULT_FREQ Starting frequency for the device after boot MIN_FREQ

The codebase requires knowledge of the two master clock frequencies that will be
present on the master-clock port(s). One for 44.1kHz, 88.2kHz etc and one for 48kHz,
96kHz etc. These are set using defines in Table 10. All values are in Hz.

Table 10: Master clock rate defines

Define Description Default

CLK_441 Master clock defines for 44100 rates
(Hz)

(256 * 44100)

MCLK_48 Master clock defines for 48000 rates
(Hz)

(256 * 48000)

14

lib_xua: USB Audio components library

4.4 USB Audio Class version

The codebase supports USB Audio Class (UAC) versions 1.0 and 2.0.

UAC 2.0 offers many improvements over UAC 1.0, most notable is the complete support
for high-speed (HS) operation. Thismeans that Audio Class devices are no longer limited
to full-speed (FS) operation allowing greater channel counts, sample frequencies and
sample bit-depths. Additional improvements, amongst others, include:

· Added support for multiple clock domains, clock description and clock control

· Extensive support for interrupts to inform the host about dynamic changes that occur
to different entities such as Clocks etc

Driver support

Audio Class 1.0

· Supported in Apple macOS.

· Supported in all modern Microsoft Windows operating systems (i.e. Windows XP and
later).

Audio Class 2.0

· Supported in Apple macOS since version 10.6.4.

· Supported in Windows since version 10, release 1703.

Third party Windows drivers are also available, however, documentation of these is be-
yond the scope of this document, please contact XMOS for further details.

Configuring Audio Class version

Configuring the AUDIO_CLASS define to 1 or 2 will set the UAC version for the device to
1.0 or 2.0 respectively.

The default value is 2 which causes the device to run as a HS UAC 2.0 device when con-
nected to a HS host/hub and as a FS UAC 2.0 device when connected to a FS host/hub.

Setting AUDIO_CLASS to 1 will cause the device to run as a FS Audio Class 1.0 device.

Warning

To ensure specification compliance, Audio Class 1.0 mode is not supported at high-
speed.

Defines are also provided to allow a different UAC version for HS and FS:

· XUA_AUDIO_CLASS_HS: UAC version to run at high-speed (0: Disabled, 2: Audio
Class 2.0)

· XUA_AUDIO_CLASS_FS: UAC version to run at full-speed (0: Disabled, 1: Audio Class
1.0, 2: Audio Class 2.0)

15

lib_xua: USB Audio components library

Warning

Disabling Audio Class support or dynamically switching between Audio Class 1.0 and
2.0 based on USB bus speed may lead to USB compliance issues.

The USB-IF views such behavior as a significant functional change, which may vi-
olate compliance requirements. Devices are expected to maintain consistent func-
tionality regardless of bus speed, and altering the USB class or interface descriptors
dynamically can result in unpredictable host behavior and test failures during USB-IF
certification.

Recommendation: Avoid switching USB Audio Class modes based on bus speed.

Due to bandwidth limitations of FS USB the following restrictions are applied during FS
operation for both UAC 1.0 and 2.0 modes:

· Sample rate is limited to a maximum of 48kHz if both input and output is enabled.

· Sample rate is limited to a maximum of 96kHz if only input or output is enabled.

· Channel count is limited to a maximum of 2 channels for both input and output paths.

Audio Class 1.0 devices Some products may opt to operate in UAC 1.0 mode to en-
able driver-less compatibility with older Windows versions or certain embedded hosts.
This mode was historically preferred for ensuring basic plug-and-play audio functionality
without requiring custom drivers.

However, the need for UAC 1.0 support is diminishing as UAC 2.0 becomes more widely
supported across modern operating systems and embedded platforms. UAC 2.0 offers
better performance, higher sample rates, and more robust feature support, and is now
natively supported on Windows 10+, macOS, Linux, and many embedded systems.

Recommendation: Where possible, default to UAC 2.0 for new designs unless specific
host compatibility requirements mandate support for UAC 1.0.

The device will operate in FS UAC 1.0 mode if one of the following is true:

· The code is compiled for USB Audio Class 1.0 only i.e. - AUDIO_CLASS is set to 1 or -
XUA_AUDIO_CLASS_HS is set to 0 and XUA_AUDIO_CLASS_FS is set to 1.

· The code is compiled for UAC2.0 at HS andUAC 1.0 at FS i.e. XUA_AUDIO_CLASS_HS
is set to 2 and XUA_AUDIO_CLASS_FS is set to 1 and the device is connected to a
host via a full-speed link

Related defines

Table 11 describes the defines that affect audio class selection:

16

lib_xua: USB Audio components library

Table 11: Audio Class defines

Define Description Default

AUDIO_CLASS Audio Class version (1 or 2) 2
XUA_AUDIO_CLASS_HS Audio Class version to run

at high-speed (0: Disabled, 2
UAC 2.0)

2

XUA_AUDIO_CLASS_FS Audio Class version to run
at full-speed (0: Disabled, 1:
UAC 1.0, 2: UAC 2.)

2

17

lib_xua: USB Audio components library

4.5 Synchronisation

The codebase supports “Synchronous” and “Asynchronous” modes for USB transfer as
defined by the USB specification(s).

Asynchronous mode (XUA_SYNCMODE_ASYNC) has the advantage that the device is
clock-master. This means that a high-quality local master-clock source can be utilised.
It also has the benefit that the device may synchronise its master clock to an external
digital input stream e.g. S/PDIF and thus avoiding sample-rate conversion.

The drawback of this mode is that it burdens the host with syncing to the device which
some hosts may not support. This is especially pertinent to embedded hosts, however,
most PCs and mobile devices will indeed support this mode.

Synchronousmode (XUA_SYNCMODE_SYNC) is an option if the target host does not sup-
port asynchronousmode or if it is desirable to synchronisemany devices to a single host.
It should be noted, however, that input from digital streams, such as S/PDIF, are not cur-
rently supported in this mode.

Note

The selection of synchronisation mode is done at build time and cannot be changed
dynamically.

Setting the synchronisation mode of the device is done using the defines in Table 12.

Table 12: Sync mode

Define Description Default

XUA_SYNCMODE USB synchronisation mode XUA_SYNCMODE_ASYNC

When operating in synchronous mode a local master clock must be generated that is
synchronised to the incoming SoF rate from USB. Either an external Cirrus Logic CS2100
device is required for this purpose or, on xcore.ai devices, the on-chip application PLL
may be used via lib_sw_pll. In the case of using the CS2100, the codebase expects to
drive a synchronisation signal to this external device as a reference.

The programmer should ensure the defines in Table 13 are set appropriately.

Table 13: Reference clock location

Define Description Default

PLL_REF_TILE Tile location of reference to CS2100 device AUDIO_IO_TILE
XUA_USE_SW_PLL Whether or not to use sw_pll to recover the

clock (xcore.ai only)
1 (enabled)
for xcore.ai
targets.

The codebase expects the CS2100 reference signal port to be defined in the application
XN file as PORT_PLL_REF. This may be a port of any bit-width, however, connection to
bit[0] is assumed:

18

lib_xua: USB Audio components library

<Port Location="XS1_PORT_1A" Name="PORT_PLL_REF"/>

Configuration of the external CS2100 device (typically via I2C) is beyond the scope of this
document.

19

lib_xua: USB Audio components library

4.6 I²S/TDM

I²S/TDM is typically fundamental to most products and is built into the
XUA_AudioHub() thread.

Table 14 lists the defines that affect the I²S implementation.

Table 14: I²S defines

Define Description Default

I2S_CHANS_DAC The desired number of output channels via I2S (0 for
disabled)

N/A (Must be defined)

I2S_CHANS_ADC The desired number of input channels via I2S (0 for dis-
abled)

N/A (Must be defined)

XUA_PCM_FORMAT Enables either TDM or I2S mode XUA_PCM_FORMAT_I2S
CODEC_MASTER Sets if xcore is I2S master or slave 0 (xcore is master)
XUA_I2S_N_BITS I2S/TDM word length (16, 32-bit supported) 32

The I²S code expects that the ports required for I²S (master clock, LR-clock, bit-clock and
data lines) are defined in the application XN file on the relevant Tile. For example:
<Tile Number="0" Reference="tile[0]">

<Port Location="XS1_PORT_1A" Name="PORT_MCLK_IN"/>
<Port Location="XS1_PORT_1B" Name="PORT_I2S_LRCLK"/>
<Port Location="XS1_PORT_1C" Name="PORT_I2S_BCLK"/>
<Port Location="XS1_PORT_1D" Name="PORT_I2S_DAC0"/>
<port Location="XS1_PORT_1E" Name="PORT_I2S_DAC1"/>
<Port Location="XS1_PORT_1F" Name="PORT_I2S_ADC0"/>
<Port Location="XS1_PORT_1G" Name="PORT_I2S_ADC1"/>

</Tile>

All of the I²S/TDM related ports must be 1-bit ports.

Note

TDMmode allows 8 channels (rather than 2) to be supplied on each data-line.

Note

Data output/input is in “I²S” format, rather than, say “left-justified” or “right-justified”
formats. I²S format specifies a single bit-clock delay after the LR-clock transition
before sample-data is driven/received. This also applies to TDMmode. TDMsupport
in ADC/DAC hardware is quite varied, an “offset” value may need to be programmed
into the external device for compatible operation.

20

lib_xua: USB Audio components library

4.7 S/PDIF transmit

The codebase supports a single, stereo, S/PDIF transmitter. This can be output over 75
Ω coaxial or optical fibre. In order to provide S/PDIF transmit functionality lib_xua uses
lib_spdif.

Basic configuration of S/PDIF transmit functionality is achieved with the defines in Table
15.

Table 15: S/PDIF tx defines

Define Description Default

XUA_SPDIF_TX_EN Enable S/PDIF transmit 0 (Disabled)
SPDIF_TX_INDEX Output channel offset to use for S/PDIF

transmit
0

In addition, the developer may choose which tile the S/PDIF transmitter runs on, see
Table 16

Table 16: S/PDIF tile define

Define Description Default

SPDIF_TX_TILE Tile that S/PDIF tx is connected to AUDIO_IO_TILE

The codebase expects the S/PDIF transmit port to be defined in the application XN file
as PORT_SPDIF_OUT. This must be a 1-bit port, for example:
<Port Location="XS1_PORT_1A" Name="PORT_SPDIF_OUT"/>

21

https://www.xmos.com/file/lib_spdif

lib_xua: USB Audio components library

4.8 S/PDIF receive

The codebase supports a single, stereo, S/PDIF receiver. This can be input via 75 Ω
coaxial or optical fibre. In order to provide S/PDIF functionality lib_xua uses lib_spdif.

Basic configuration of S/PDIF receive functionality is achieved with the defines in Table
17

Table 17: S/PDIF rx defines

Define Description Default

XUA_SPDIF_RX_ENEnable S/PDIF receive 0 (Disabled)
SPDIF_RX_INDEX Defines which channels S/PDIF will be in-

put on
N/A (must be de-
fined)

Note

S/PDIF receive always runs on the tile defined by AUDIO_IO_TILE

The codebase expects the S/PDIF receive port to be defined in the application XN file as
PORT_SPDIF_IN. This must be a 1-bit port, for example:
<Port Location="XS1_PORT_1A" Name="PORT_SPDIF_IN"/>

When S/PDIF receive is enabled the codebase expects to either drive a synchronisa-
tion signal to an external Cirrus Logic CS2100 device or use lib_sw_pll (xcore.ai only)
for master-clock generation.

The programmer should ensure the defines in Table 18 are set appropriately

Table 18: Reference clock location

Define Description Default

PLL_REF_TILE Tile location of reference to CS2100 device AUDIO_IO_TILE

The codebase expects this reference signal port to be defined in the application XN file
as PORT_PLL_REF. This may be a port of any bit-width, however, connection to bit[0] is
assumed:
<Port Location="XS1_PORT_1A" Name="PORT_PLL_REF"/>

Configuration of the external CS2100 device (typically via I2C) is beyond the scope of this
document.

22

https://www.xmos.com/file/lib_spdif

lib_xua: USB Audio components library

4.9 ADAT transmit

The codebase supports a single ADAT transmitter that can transmit eight channels of un-
compressed digital audio at sample-rates of 44.1 or 48 kHz over an optical cable. Higher
rates are supported with a reduced number of samples via S/MUX (‘sample multiplex-
ing’). Using S/MUX, the ADAT transmitter can transmit four channels at 88.2 or 96 kHz
or two channels at 176.4 or 192 kHz.

In order to provide ADAT transmit functionality lib_xua uses lib_adat.

Basic configuration of ADAT transmit functionality is achieved with the defines in Table
19.

Table 19: ADAT transmit defines

Define Description Default

XUA_ADAT_TX_EN Enable ADAT transmit 0 (Disabled)
ADAT_TX_INDEX Start channel index of ADAT TX chan-

nels
N/A (must be defined by the applica-
tion)

ADAT_TX_USE_SHARED_BUFF Use shared memory when transfer-
ring samples between AudioHub and
the ADAT tansmitter task

N/A (must be defined by the applica-
tion)

The ADAT transmitter runs on the same tile as the Audio IO (AUDIO_IO_TILE)

The codebase expects the ADAT transmit port to be defined in the application XN file as
PORT_ADAT_OUT. This must be a 1-bit port, for example:
<Port Location="XS1_PORT_1G" Name="PORT_ADAT_OUT"/>

23

https://www.xmos.com/file/lib_adat

lib_xua: USB Audio components library

4.10 ADAT receive

The codebase supports a single ADAT receiver that can receive up to eight channels of
audio at a sample rate of 44.1kHz or 48kHz over an optical interface. Higher rates are
supported with a reduced number of samples via S/MUX (‘sample multiplexing’). Using
S/MUX, the ADAT receiver can receive four channels at 88.2 or 96 kHz or two channels
at 176.4 or 192 kHz.

In order to provide ADAT functionality lib_xua uses lib_adat.

Basic configuration of ADAT receive functionality is achieved with the defines in Table
20.

Table 20: ADAT RX defines

Define Description Default

XUA_ADAT_RX_EN Enable ADAT receive 0 (Disabled)
ADAT_RX_INDEX Start channel index of ADAT RX channels N/A (must be defined by the application)

The codebase expects the ADAT receive port to be defined in the application XN file as
PORT_ADAT_IN. This must be a 1-bit port, for example:
<Port Location="XS1_PORT_1O" Name="PORT_ADAT_IN"/>

When ADAT receive is enabled the codebase expects to either drive a synchronisation
signal to an external Cirrus Logic CS2100 device or use lib_sw_pll (xcore.ai only) for gen-
erating a master clock that is synchronised to the ADAT digital stream.

The programmer should ensure the defines in Table 21 are set appropriately:

Table 21: Reference clock location

Define Description Default

PLL_REF_TILE Tile location of reference signal to CS2100 device AUDIO_IO_TILE

The codebase expects this reference signal port to be defined in the application XN file
as PORT_PLL_REF. This may be a port of any bit-width, however, connection to bit[0] is
assumed:
<Port Location="XS1_PORT_1A" Name="PORT_PLL_REF"/>

Configuration of the external CS2100 device (typically via I²C) is beyond the scope of this
document.

24

https://www.xmos.com/file/lib_adat
https://www.xmos.com/file/lib_sw_pll

lib_xua: USB Audio components library

4.11 MIDI

lib_xua supports MIDI input/output over USB as per Universal Serial Bus Device Class
Definition for MIDI Devices.

MIDI functionality is enabled with the define in Table 22.

Table 22: MIDI enable define

Define Description Default

MIDI Enable MIDI functionality 0 (Disabled)

lib_xua supports MIDI receive on a 4-bit or 1-bit port, defaulting to using a 1-bit port.
MIDI transmit is supported over a port of any bit-width. By default lib_xua assumes
the transmit and receive I/O is connected to bit[0] of the port. This is configurable for the
transmit port. Table 23 provides information on configuring these parameters.

Table 23: MIDI port defines

Define Description Default

MIDI_RX_PORT_WIDTH Port width of the MIDI rx port (1 or 4bit) 1 (1-bit port)
MIDI_SHIFT_TX MIDI tx bit 0 (bit[0])

The MIDI code expects that the ports for receive and transmit are defined in the applica-
tion XN file on the relevant Tile. The expected names for the ports are PORT_MIDI_IN
and PORT_MIDI_OUT, for example:
<Tile Number="0" Reference="tile[0]">

<!-- MIDI -->
<Port Location="XS1_PORT_1F" Name="PORT_MIDI_IN"/>
<Port Location="XS1_PORT_4C" Name="PORT_MIDI_OUT"/>

</Tile>

25

https://www.usb.org/sites/default/files/midi10.pdf
https://www.usb.org/sites/default/files/midi10.pdf

lib_xua: USB Audio components library

4.12 PDM microphones

lib_xua supports input from up to 8 PDMmicrophones although this is extensible.

PDM microphone support is provided via lib_mic_array. Settings for PDM microphones
are controlled with the defines in Table 24.

Table 24: PDM defines

Define Description Default

XUA_NUM_PDM_MICS The number of mics to enable (0 for disabled).
This enables compilation of the PDM to PCM
code also.

0 (dis-
abled)

PDM_MIC_INDEX Defines which starting input channel the mics
map to

0

XUA_PDM_MIC_FREQ Defines the PCM output sample rate of
lib_mic_array

None
(must be
defined)

XUA_PDM_MIC_USE_PDM_ISRDefine as 1 to enable merging of the PDM re-
ceive task and decimation task into a single
thread using an ISR

0 (use
separate
threads
for PDM
and deci-
mation)

Note

Currently only a single, fixed sample rate is supported for the PDM microphones

Note

Setting XUA_PDM_MIC_USE_PDM_ISR is only recommended for PDM mic counts
below 8.

Please see the PDM Microphones section for further details.

26

https://www.xmos.com/file/lib_mic_array

lib_xua: USB Audio components library

4.13 Mixer

lib_xua supports audio mixing functionality with highly flexible routing options.

Essentially the mixer is capable of performing 8 separate mixes with up to 18 inputs at
sample rates up to 96kHz and 2 mixes with up to 18 inputs at higher sample rates.

Inputs to the mixer can be selected from any device input (USB, S/PDIF, I2S etc) and
outputs from the mixer can be routed to any device output (USB, S/PDIF, I2S etc).

See Digital mixer for full details of the mixer including control.

Basic configuration of mixer functionality is achieved with the the defines Table 25.

Table 25: Mixer defines

Define Description Default

MIXER Enable mixer 0 (Disabled)
MAX_MIX_COUNT Number of separate mix outputs to perform 8
MIX_INPUTS Number of channels input into the mixer 18

Note

The mixer threads always run on the tile defined by AUDIO_IO_TILE

27

lib_xua: USB Audio components library

4.14 Direct Stream Digital (DSD)

Direct Stream Digital (DSD) is used for digitally encoding audio signals on Super Audio
CDs (SACD). It uses pulse-density modulation (PDM) encoding.

lib_xua supports DSD playback from the host via “DSD over PCM” (DoP) and a “Native”
implementation which is, while USB specification based, proprietary to XMOS.

DSD is enabled with by setting the following define to a non-zero value:

Table 26: DSD defines

Define Description Default

DSD_CHANS_DACNumber of DSD channels 0 (Disabled)

Typically this would be set to 2 for stereo output.

By default both “Native” and DoP functionality are enabled when DSD is enabled. The
Native DSD implementation uses an alternative streaming interface such that the host
can inform the device that DSD data is being streamed. See: Audio stream formats for
details.

If only DoP functionality is desired the Native implementation can be disabled with the
define in Table 27.

Table 27: Native DSD defines

Define Description Default

NATIVE_DSD Enable/Disable “Native” DSD implementation 1 (Enabled)

DSD over PCM (DoP)

DoP support follows the method described in the DoP Open Standard 1.1.

While Native DSD support is available in Windows through a driver, macOS incorporates
a USB driver that only supports PCM, this is also true of the central audio engine, Core-
Audio. It is therefore not possible to use the “Native” scheme defined above using the
built in driver of macOS.

Since the macOS only allows a PCM path a method of transporting DSD audio data over
PCM frames has been developed.

Standard DSD has a sample size of 1 bit and a sample rate of 2.8224MHz - this is 64x
the speed of a compact disc (CD). This equates to the same data-rate as a 16 bit PCM
stream at 176.4kHz.

In order to clearly identify when this PCM stream contains DSD and when it contains
PCM some header bits are added to the sample. A 24-bit PCM stream is therefore used,
with the most significant byte being used for a DSD marker (alternating 0x05 and 0xFA
values).

When enabled, if USB audio design detects a un-interrupted run of these samples (above
a defined threshold) it switches to DSD mode, using the lower 16-bits as DSD sample
data. When this check for DSD headers fails the design falls back to PCM mode. DoP

28

http://dsd-guide.com/sites/default/files/white-papers/DoP_openStandard_1v1.pdf

lib_xua: USB Audio components library

detection and switching is done completely in the Audio/I2S thread (xua_audiohub.xc).
All other code handles the audio samples as PCM.

The design supports higher DSD/DoP rates (i.e. DSD128) by simply raising the underlying
PCM sample rate e.g. from 176.4kHz to 352.8kHz. The marker byte scheme remains
exactly the same regardless of rate.

Note

DoP requires bit-perfect transmission - therefore any audio/volume processing will
currupt the stream.

“Native” vs DoP

Since the DoP specification requires header bytes this eats into the data bandwidth. The
“Native” implementation has no such overhead and can therefore transfer the same DSD
rate at half the effective PCM rate of DoP. Such a property may be desired when support-
ing DSD128 without exposing a 352.8kHz PCM rate, for example.

Ports

The codebase expects 1-bit ports to be defined in the application XN file for the DSD data
and clock lines for example:
<Port Location="XS1_PORT_1M" Name="PORT_DSD_DAC0"/>
<port Location="XS1_PORT_1N" Name="PORT_DSD_DAC1"/>
<Port Location="XS1_PORT_1G" Name="PORT_DSD_CLK"/>

Note

The DSD ports may or may not overlap the I2S ports - the codebase will reconfigure
the ports as appropriate when switching between PCM and DSD modes.

29

lib_xua: USB Audio components library

4.15 DFU

The codebase supports DFU over USB implementation compliant with version 1.1 of Uni-
versal Serial Bus Device Class Specification for Device Firmware Upgrade.

Table 28 lists the DFU related configuration options.

Table 28: DFU defines

Define Description Default

XUA_DFU_EN Enable DFU functionality 1 (Enabled)
DFU_PID Product ID when enumerating

in DFU mode. This is recom-
mended to be different from the
runtime device PID

PID_AUDIO_2 or
PID_AUDIO_1 depending
on whether the device is run-
ning Audio Class 2.0 or 1.0

30

https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://www.usb.org/sites/default/files/DFU_1.1.pdf

lib_xua: USB Audio components library

4.16 Audio stream formats

The design currently supports up to three different stream formats for playback, se-
lectable at run time. This is implemented using standard Alternative Settings to the Audio
Streaming interfaces.

An Audio Streaming interface can have Alternate Settings that can be used to change
certain characteristics of the interface and underlying endpoint. A typical use of Alter-
nate Settings is to provide a way to change the subframe size and/or number of chan-
nels on an active Audio Streaming interface. Whenever an Audio Streaming interface
requires an isochronous data endpoint, it must at least provide the default Alternate Set-
ting (Alternate Setting 0) with zero bandwidth requirements (no isochronous data end-
point defined) and an additional Alternate Setting that contains the actual isochronous
data endpoint. This zero bandwidth alternative setting 0 is always implemented by the
design.

For further information refer to 3.16.2 of USB Audio Device Class Definition for Audio
Devices, release 2.0

Customisable parameters for the Alternate Settings provided by the design are as fol-
lows.:

· Audio sample resolution

· Audio sample subslot size

· Audio data format

Note

Currently only a single format is supported for the recording stream

By default the design exposes two sets of Alternative Settings for the playback Audio
Streaming interface, one for 16-bit and another for 24-bit playback. When DSD is enabled
an additional (32-bit) alternative is exposed.

Audio subslot

An audio subslot holds a single audio sample. See USB Device Class Definition for Audio
Data Formats for full details. This is represented by bSubslotSize in the devices descrip-
tor set.

An audio subslot always contains an integer number of bytes. The specification limits
the possible audio subslot size to 1, 2, 3 or 4 bytes per audio subslot.

Since the xcore is a 32-bit machine the value 4 is typically used for bSubSlot - this means
that packing/unpacking samples to/frompackets is computationally trivial. Other values
can, however, be used and the values 4, 3 and 2 are supported.

Values other than 4 may be used for the following reasons:

· Bus-bandwidth needs to be efficiently utilised. For example maximising channel-
count/sample-rates in full-speed operation.

· To support restrictions with certain hosts. For example, historically many Android
based hosts support only 16 bit samples in a 2-byte subslot.

31

https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement

lib_xua: USB Audio components library

bSubSlot size is set using the following defines:

· When running in high-speed:
· HS_STREAM_FORMAT_OUTPUT_1_SUBSLOT_BYTES
· HS_STREAM_FORMAT_OUTPUT_2_SUBSLOT_BYTES
· HS_STREAM_FORMAT_OUTPUT_3_SUBSLOT_BYTES

· When running in full-speed:
· FS_STREAM_FORMAT_OUTPUT_1_SUBSLOT_BYTES
· FS_STREAM_FORMAT_OUTPUT_2_SUBSLOT_BYTES
· FS_STREAM_FORMAT_OUTPUT_3_SUBSLOT_BYTES

Audio sample resolution

An audio sample is represented using a number of bits (bBitResolution) less than or equal
to the number of total bits available in the audio subslot i.e. bBitResolution <= bSubslot-
Size * 8). The design supports values 16, 24 and 32.

bBitResolution is set using the following defines:

· When operating at high-speed:
· HS_STREAM_FORMAT_OUTPUT_1_RESOLUTION_BITS
· HS_STREAM_FORMAT_OUTPUT_2_RESOLUTION_BITS
· HS_STREAM_FORMAT_OUTPUT_3_RESOLUTION_BITS

· When operating at full-speed:
· FS_STREAM_FORMAT_OUTPUT_1_RESOLUTION_BITS
· FS_STREAM_FORMAT_OUTPUT_2_RESOLUTION_BITS
· FS_STREAM_FORMAT_OUTPUT_3_RESOLUTION_BITS

Audio format

The design supports two audio formats, PCM and, when “Native” DSD is enabled, Direct
Stream Digital (DSD). A DSD capable DAC is required for the latter.

The USB Audio Raw Data format is used to indicate DSD data (2.3.1.7.5 of USB Device
Class Definition for Audio Data Formats). This use of a RAW/DSD format in an alternative
setting is termed by XMOS as Native DSD

The following defines affect both full-speed and high-speed operation:

· STREAM_FORMAT_OUTPUT_1_DATAFORMAT

· STREAM_FORMAT_OUTPUT_2_DATAFORMAT

· STREAM_FORMAT_OUTPUT_3_DATAFORMAT

The following options are supported:

· UAC_FORMAT_TYPEI_RAW_DATA

· UAC_FORMAT_TYPEI_PCM

32

https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement

lib_xua: USB Audio components library

Note

Currently DSD is only supported on the output/playback stream

Note

4 byte slot size with a 32 bit resolution is required for RAW/DSD format

Native DSD requires driver support and is available in the Thesycon Windows driver via
ASIO.

33

lib_xua: USB Audio components library

4.17 Other options

There are a few other, lesser used, options available. These are shown in Table 29.

Table 29: Other defines

Define Description Default

XUA_USB_EN Allows the use of the audio subsytem without USB 1 (enabled)
INPUT_VOLUME_CONTROL Enables volume control on input channels, both descriptors and

processing
1 (enabled)

OUTPUT_VOLUME_CONTROL Enables volume control on output channels, both descriptors
and processing

1 (enabled)

XUA_CHAN_BUFF_CTRL Enables event based communication between XUA_Buffer_Ep()
and XUA_Buffer_Decouple() which significantly reduces power
consumption (approx 40 mW on xcore.ai) at the cost of con-
suming two extra channel-ends. Consequently this option may
not be viable on some high end configurations which feature
multiple digital interfaces such as SPDIF or ADAT.

0 (disabled)

34

lib_xua: USB Audio components library

5 Advanced usage

Whilst it is possible to programUSBAudio devices usinglib_xua by only setting defines
(see “Codeless” programming model) some developers may want to code a USB Audio
device from scratch using the building blocks provided by lib_xua.

This could be for a number of reasons, adding complex DSP, merging with some other
functionality etc. This section describes these building blocks and their use.

Reviewing application note AN00246 is highly recommended at this point.

5.1 Core hardware resources

The user must declare and initialise relevant hardware resources (globally) and pass
them to the relevant function of lib_xua.

As an absolute minimum the following resources are required:

· A 1-bit port for audio master clock input

· A clock-block, which will be clocked from the master clock input port

When using the default asynchronous mode of operation an additional port is required:

· A n-bit port for internal feedback calculation (typically a free, unused port is used e.g.
XS1_PORT_16B)

Example declaration of these resources might look as follows:
in port p_mclk_in = PORT_MCLK_IN;
in port p_for_mclk_count = PORT_MCLK_COUNT; /* Extra port for counting master clock ticks */
clock clk_audio_mclk = on tile[0]: XS1_CLKBLK_5; /* Master clock */

Note

The PORT_MCLK_IN and PORT_MCLK_COUNT definitions are derived from the
projects XN file

The XUA_AudioHub() function typically requires an audio master clock input to clock
the physical audio I/O such as S/PDIF transmit and I²S1 . Less obvious is the reasoning for
the XUA_Buffer() task having the same requirement when running in asynchronous
mode - it is used for the USB feedback system and packet sizing.

Due to the above, if the XUD_AudioHub() and XUA_Buffer() cores must reside on
separate tiles a separate master clock input port must be provided to each, for example:
/* Master clock for the audio IO tile */
in port p_mclk_in = PORT_MCLK_IN;

/* Resources for USB feedback */
in port p_mclk_in_usb = PORT_MCLK_IN_USB; /* Extra master clock input for the USB tile */

Whilst the hardware resources described in this section satisfy the basic requirements
for the operation (or build) of lib_xua, projects typically also need some additional au-
dio I/O, I²S or S/PDIF for example.

These should be passed into the various task functions as required - see API reference.

1 This is not the case when only I²S slave is used.

35

lib_xua: USB Audio components library

36

lib_xua: USB Audio components library

5.2 Running the core components

In their most basic form the core components can be run as follows:
par
{

/* Endpoint 0 thread from lib_xua */
XUA_Endpoint0(c_ep_out[0], c_ep_in[0], c_aud_ctl, ...);

/* Buffering threads - handles audio data to/from EP's and gives/gets data to/from the audio I/O thread */
/* Note, this spawns two threads */
XUA_Buffer(c_ep_out[1], c_ep_in[1], c_sof, c_aud_ctl, p_for_mclk_count, c_aud);

/* AudioHub/IO thread does most of the audio IO i.e. I2S (also serves as a hub for all audio) */
XUA_AudioHub(c_aud, ...) ;

}

XUA_Buffer() expects the p_for_mclk_count argument to be clocked from the
audio master clock before receiving it as a parameter. The following code satisfies this
requirement:
{

/* Connect master-clock clock-block to clock-block pin */

/* Clock clock-block from mclk pin */
set_clock_src(clk_audio_mclk_usb, p_mclk_in_usb);

/* Clock the "count" port from the clock block */
set_port_clock(p_for_mclk_count, clk_audio_mclk_usb);

/* Set the clock off running */
start_clock(clk_audio_mclk_usb);

XUA_Buffer(c_ep_out[1], c_ep_in[1], c_sof, c_aud_ctl, p_for_mclk_count, c_aud);
}

Note

Keeping this configuration outside of XUA_Buffer()means the possibility of shar-
ing the p_mclk_in_usb port with additional tasks is not precluded.

For USB connectivity a call to XUD_Main() (from lib_xud) must also be made:
/* Low level USB device layer thread */
on tile[1]: XUD_Main(c_ep_out, 2, c_ep_in, 2, c_sof, epTypeTableOut, epTypeTableIn, null, null, -1, XUD_SPEED_HS,
↪→ XUD_PWR_SELF);

Additionally, the required communication channels must also be declared:
/* Channel arrays for lib_xud */
chan c_ep_out[2];
chan c_ep_in[2];

/* Channel for communicating SOF notifications from XUD to the Buffering threads */
chan c_sof;

/* Channel for audio data between buffering threads and AudioHub/IO thread */
chan c_aud;

/* Channel for communicating control messages from EP0 to the rest of the device (via the buffering threads) */
chan c_aud_ctl;

This section provides enough information to implement a skeleton program for a USB
Audio device. When running the xcore device will present itself as a USB Audio Class
device on the bus. Audio streamingwill be impaired since tasks relating to physical audio
interfaces are yet to be instantiated.

37

lib_xua: USB Audio components library

5.3 I²S/TDM

I²S/TDM is typically fundamental to most products and is built into the
XUA_AudioHub() thread.

In order to enable I²S/TDM one must declare an array of ports for the data-lines (one for
each direction):
/* Port declarations. Note, the defines come from the XN file */
buffered out port:32 p_i2s_dac[] = {PORT_I2S_DAC0}; /* I2S Data-line(s) */
buffered in port:32 p_i2s_adc[] = {PORT_I2S_ADC0}; /* I2S Data-line(s) */

Ports for the sample and bit clocks are also required:
buffered out port:32 p_lrclk = PORT_I2S_LRCLK; /* I2S Bit-clock */
buffered out port:32 p_bclk = PORT_I2S_BCLK; /* I2S L/R-clock */

Note

All of these ports must be 1-bit ports, 32-bit buffered. Based on whether the xcore is
bus slave/master the ports must be declared as input/output respectively.

These ports must then be passed to the XUA_AudioHub() task appropriately.

I²S/TDM functionality also requires two clock-blocks, one for bit-clock and another for
the master clock e.g.:
/* Clock-block declarations */
clock clk_audio_bclk = on tile[0]: XS1_CLKBLK_4; /* Bit clock */
clock clk_audio_mclk = on tile[0]: XS1_CLKBLK_5; /* Master clock */

These hardware resources must be passed into the call to XUA_AudioHub():
/* AudioHub/IO thread does most of the audio IO i.e. I2S (also serves
* as a hub for all audio) */

on tile[0]: XUA_AudioHub(c_aud, clk_audio_mclk, clk_audio_bclk, p_mclk_in,
p_lrclk, p_bclk, p_i2s_dac, p_i2s_adc);

38

lib_xua: USB Audio components library

5.4 Mixer

Since the mixer has no I/O the instantiation is straight forward. Communication wise,
the mixer threads are inserted between the AudioHub and Buffering thread(s)

It takes three channel ends as parameters, one for audio to/from the buffering thread(s),
one for audio to/from the AudioHub thread and another one for control requests from
the Endpoint0 thread.

The mixer task will automatically handle the change in mix count based on the current
sample frequency (communicated via the data channels from the buffering task).

An example of how themixer taskmight be called is shown below (some parameter lists
are abbreviated)
chan c_aud_0, c_aud_1, c_mix_ctl;

par
{

XUA_Buffer(..., c_aud_0, ...);

mixer(c_aud0, c_aud_1, c_mix_ctl);

XUA_AudioHub(c_aud_1, ...);

XUA_Endpoint0(..., c_mix_ctl, ...);
}

39

lib_xua: USB Audio components library

6 Additional features

The previous chapter describes the use of core functionality contained within lib_xua.
This section details enabling additional features with supported external dependencies,
for example, lib_xua can provide S/PDIF output through the use of lib_spdif.

Where something must be defined, it is recommended this is done in xua_conf.h but
could also be done in the application CMakeLists.txt.

6.1 S/PDIF transmit

lib_xua supports the development of devices with S/PDIF transmit functionality
through the use of lib_spdif. The XMOS S/PDIF transmitter runs on a single thread and
supports rates up to 192 kHz.

The S/PDIF transmitter thread takes PCMaudio samples via a channel and outputs them
in S/PDIF format to a port. Samples are provided to the S/PDIF transmitter task from the
XUA_AudioHub() task.

The channel should be declared as normal:
chan c_spdif_tx

In order to use the S/PDIF transmitter with lib_xua a 1-bit port must be declared e.g:
buffered out port:32 p_spdif_tx = PORT_SPDIF_OUT; /* SPDIF transmit port */

This port should be clocked from the master-clock, lib_spdif provides a helper func-
tion for setting up the port:
spdif_tx_port_config(p_spdif_tx, clk_audio_mclk, p_mclk_in, delay);

Note

If sharing themaster-clock port and clockblockwithXUA_AudioHub() (or any other
task) then this setup should be done before running the tasks in a par statement.

Finally the S/PDIF transmitter task must be run - passing in the port and channel for
communication with XUA_AudioHub. For example:
par
{

while(1)
{

/* Run the S/PDIF transmitter task */
spdif_tx(p_spdif_tx, c_spdif_tx);

}

/* AudioHub/IO thread does most of the audio IO i.e. I2S (also serves as
* a hub for all audio).
* Note, since we are not using I2S we pass in null for LR and Bit
* clock ports and the I2S dataline ports */

XUA_AudioHub(c_aud, clk_audio_mclk, null, p_mclk_in, null, null,
null, null, c_spdif_tx);

}

For further details please see the documentation, application notes and examples pro-
vided for lib_spdif.

40

https://www.xmos.com/file/lib_spdif

lib_xua: USB Audio components library

6.2 S/PDIF receive

lib_xua supports the development of deviceswith S/PDIF receive functionality through
the use of lib_spdif. TheXMOSS/PDIF receiver runs on a single thread and supports rates
up to 192 kHz.

The S/PDIF receiver inputs data via a port and outputs samples via a channel. It requires
a 1-bit port. For example:
in port p_spdif_rx = PORT_SPDIF_IN;

It also requires a clock-block, for example:
clock clk_spd_rx = XS1_CLKBLK_1;

Finally, a channel for the output samplesmust be declared, note, this should be a stream-
ing channel:
streaming chan c_spdif_rx;

The S/PDIF receiver should be called on the appropriate tile:
spdif_rx(c_spdif_rx, p_spdif_rx, clk_spd_rx, 192000);

Note

It is recomended to use the value 192000 for the sample_freq_estimate param-
eter

With the steps above an S/PDIF stream can be captured by the xcore. To be functionally
useful the audiomaster clockmust be able to synchronise to this external digital stream.
Additionally, the host can be notified regarding changes in the validity of this stream, it’s
frequency etc.

To synchronise to external streams the codebase assumes the use of an external Cirrus
Logic CS2100 device or lib_sw_pll on xcore.ai designs.

The ClockGen() task from lib_xua provides the reference signal to the CS2100 de-
vice or timing information to lib_sw_pll and also handles recording of clock validity etc.
See External clock recovery (Clock Gen) for full details regarding ClockGen().

It also provides a small FIFO for S/PDIF samples before they are forwarded to the
AudioHub thread. As such it is required to be inserted in the communication path be-
tween the S/PDIF receiver and the AudioHub thread. For example:
chan c_dig_rx;
streaming chan c_spdif_rx;

par
{

SpdifReceive(..., c_spdif_rx, ...);

clockGen(c_spdif_rx, ..., c_dig_rx, ...);

XUA_AudioHub(..., c_dig_rx, ...);
}

6.3 ADAT transmit

lib_xua supports the development of deviceswith ADAT transmit functionality through
the use of lib_adat. The XMOS ADAT transmitter runs on a single thread and supports

41

https://www.xmos.com/file/lib_spdif
https://www.xmos.com/file/lib_adat

lib_xua: USB Audio components library

transmitting 8 channels of digital audio at 44.1 or 48 kHz. Higher rates are supported
with a reduced number of samples via S/MUX (‘sample multiplexing’). Using S/MUX, the
ADAT transmitter can transmit four channels at 88.2 or 96 kHz (SMUX II) or two channels
at 176.4 or 192 kHz (SMUX IV).

ADAT transmitter requires a thread to run on. Blocks of audio samples are transmitted
from the XUA_AudioHub() to the ADAT transmitter over either a dedicated channel or
a combination of a channel and shared memory.

Each block of audio samples is made of 8 samples. At sampling rates 44.1/48 kHz
(SMUX I), this consists of a single sample of each of the eight ADAT channels:

· Channel 0 sample

· Channel 1 sample

· Channel 2 sample

· Channel 3 sample

· Channel 4 sample

· Channel 5 sample

· Channel 6 sample

· Channel 7 sample

At 88.2/96 kHz (SMUX II), the audio sample block consists of two samples per four ADAT
channels:

· Channel 0 sample 0

· Channel 0 sample 1

· Channel 1 sample 0

· Channel 1 sample 1

· Channel 2 sample 0

· Channel 2 sample 1

· Channel 3 sample 0

· Channel 3 sample 1

At 176.4/192 kHz (SMUX IV), the audio sample block consists of four samples per two
ADAT channels:

· Channel 0 sample 0

· Channel 0 sample 1

· Channel 0 sample 2

· Channel 0 sample 3

· Channel 1 sample 0

· Channel 1 sample 1

42

lib_xua: USB Audio components library

· Channel 1 sample 2

· Channel 1 sample 3

The configuration option ADAT_TX_USE_SHARED_BUFF determines whether the audio
samples block is transmitted using only a channel (ADAT_TX_USE_SHARED_BUFF is
not defined) or a channel + shared memory (ADAT_TX_USE_SHARED_BUFF is defined).
When using a channel + sharedmemory for samples transfer, it is required that the ADAT
transmitter and the XUA_AudioHub() tasks run on the same tile.

The USB Audio reference applications with ADAT interface enabled in sw_usb_audio
are only tested with ADAT_TX_USE_SHARED_BUFF defined. The sam-
ple transfer sequence described in Sample communication assumes that
ADAT_TX_USE_SHARED_BUFF is defined.

Declarations

The channel used for communicating between XUA_AudioHub and ADAT transmitter
should be declared:
chan c_adat_out

In order to use the ADAT transmitter with lib_xua a 1-bit port must be declared e.g:
on stdcore[AUDIO_IO_TILE] : buffered out port:32 p_adat_tx = PORT_ADAT_OUT;

This port should be clocked from the master-clock:
configure_out_port_no_ready(p_adat_tx, clk_audio_mclk, 0);
set_clock_fall_delay(clk_audio_mclk, 7);

Finally the ADAT transmitter task is run - passing in the port and channel for communi-
cation with XUA_AudioHub:
adat_tx_port(c_adat_out, p_adat_tx);

Sample communication

Samples are communicated between XUA_AudioHub() and the adat_tx_port()
task.

The interface to the ADAT transmitter task is via a normal channel with streaming builtins
(outuint, inuint).

To begin with, XUA_AudioHub sends two values on the channel - the master clock mul-
tiplier and the S/MUX setting.

The master clock multiplier is the ratio between the mclk freqency and the sampling
frequency. The S/MUX setting is 1, 2 or 4, depending on the sampling frequency:

/* Calculate what master clock we should be using */
if (((MCLK_441) % curSamFreq) == 0)
{

mClk = MCLK_441;
#if (XUA_ADAT_TX_EN)

/* Calculate ADAT SMUX mode (1, 2, 4) */
adatSmuxMode = curSamFreq / 44100;
adatMultiple = mClk / 44100;

#endif
}
else if (((MCLK_48) % curSamFreq) == 0)
{

mClk = MCLK_48;
#if (XUA_ADAT_TX_EN)

/* Calculate ADAT SMUX mode (1, 2, 4) */
adatSmuxMode = curSamFreq / 48000;

(continues on next page)

43

lib_xua: USB Audio components library

(continued from previous page)
adatMultiple = mClk / 48000;

#endif
}

This is followed by communicating the address of a block of memory holding the audio
samples block. The XUA_AudioHub “runs ahead” of the ADAT transmitter task, assem-
bling the next sample block while the ADAT transmitter converts the current block into
an ADAT stream to transmit over the optical interface.

The ADAT transmitter, once done processing the current block, acknowledges this by
sending a data token over the channel to XUA_AudioHub as a handshake mechanism.
On receiving this handshake, XUA_AudioHub sends the address of the next block of
samples over the channel.

Note that a XS1_CT_END control token is not sent between blocks of data, leading to the
channel remaining open and getting used as a streaming channel.

XUA_AudioHub only terminates the connection by sending a XS1_CT_END token when
there’s a sampling frequency change that requires the XUA_AudioHub task to re-
communicate the master clock multiplier and the S/MUX setting.

In case of a sampling frequency change, the XUA_AudioHub() task receives the pend-
ing handshake from the ADAT transmitter, followed by sending the XS1_CT_END token
indicating the end of data streaming to the ADAT task. A fresh transmission is then
started by sending the new master clock multiplier and the S/MUX setting to the ADAT
transmitter, followed by audio blocks transfer as described above.

Fig. 2 describes the communication between XUA_AudioHub and the ADAT transmitter:

Fig. 2: Communication between AudioHub() and ADAT transmit

44

lib_xua: USB Audio components library

For further details please see the documentation and examples provided with lib_adat.

Channel count changes

When ADAT transmit is enabled, the number of USB playback channels vary depending
on the sampling freq (S/MUX mode). This is exposed to the USB host as alternative
interfaces, each supporting different channel counts, for the streaming output interface.
The number of alternative interfaces exposed depends on theMIN_FREQ andMAX_FREQ
supported over the USB interface. In the most generic case, where the device supports
all sampling rates from 44.1 to 192 kHz, 3 alternative interfaces on the streaming output
interface are exposed, each supporting a different channel count.

45

https://www.xmos.com/file/lib_adat

lib_xua: USB Audio components library

6.4 ADAT receive

lib_xua supports the development of devices with ADAT receive functionality through
the use of lib_adat. The XMOS ADAT receiver runs on a single thread.

The ADAT receive component receives up to eight channels of audio at a sample rate
of 44.1kHz or 48kHz. The API for calling the receiver functions is described in the ADAT
receive example in lib_adat .

The component outputs 32 bits words split into nine word frames. The frames are laid
out in the following manner:

· Control byte

· Channel 0 sample

· Channel 1 sample

· Channel 2 sample

· Channel 3 sample

· Channel 4 sample

· Channel 5 sample

· Channel 6 sample

· Channel 7 sample

An example of how to read the output of the ADAT component is shown below:
control = inuint(oChan);

for(int i = 0; i < 8; i++)
{

sample[i] = inuint(oChan);
}

Samples are 24-bit values contained in the lower 24 bits of the word.

The control word comprises four control bits in bits [11..8] and the value 0b00000001
in bits [7..0]. This control word enables synchronization at a higher level, in that, on the
channel, a single odd word is always read followed by eight words of data.

Usage and integration

Since the ADAT is a digital stream the device’s master clock must be synchronised to it.
The integration of ADAT receive is much the same as S/PDIF receive in that the ADAT
receive function communicates with the Clock Gen thread. This Clock Gen thread then
passes audio data onto the Audio Hub thread. It also handles locking to the ADAT clock
source.

There are some small differenceswith the S/PDIF integration accounting for the fact that
ADAT typically has 8 channels compared to S/PDIF’s two.

The Clock Gen thread also handles SMUX II (e.g. 4 channels at 96kHz) and SMUX IV (e.g.
2 channels at 192 kHz), populating the sample FIFO as appropriate. SMUX modes are
communicated to the Clock Gen thread from Endpoint 0 via the c_clk_ctl channel.
SMUXmodes are exposed to the USB host using Alternative Interfaces, with appropriate
channel counts, for the streaming input Endpoint.

46

https://www.xmos.com/file/lib_adat
https://github.com/xmos/lib_adat/tree/develop/examples/app_adat_rx_example
https://github.com/xmos/lib_adat/tree/develop/examples/app_adat_rx_example

lib_xua: USB Audio components library

47

lib_xua: USB Audio components library

7 Implementation detail

This chapter examines the implementation of the various components that make up
lib_xua. It also examines the integration of dependencies and supporting libraries.

48

lib_xua: USB Audio components library

7.1 Audio Hub and I²S

The AudioHub task performs many functions. It receives and transmits samples
from/to the Decoupler or Mixer thread over a channel.

It also drives several in and out I²S/TDM channels to/from a CODEC, DAC, ADC etc. From
now on these external devices will be termed “audio hardware”.

If the firmware is configured with the xcore as I²Smaster the required clock lines will also
be driven from this task. It also has the task of forwarding on and receiving samples
to/from other audio related tasks/threads such as S/PDIF tasks, ADAT etc.

In master mode, the xcore generates the I²S “Continuous Serial Clock” (SCK), or “Bit-
Clock” (BCLK) and the “Word Select” (WS) or “Left-Right Clock” (LRCLK) signals. Any
CODEC or DAC/ADC combination that supports I²S and can be used.

The LR-clock, bit-clock and data are all derived from the incomingmaster clock (typically
the output of the external oscillator or PLL). This is not part of the I²S standard but is
commonly included for synchronizing the internal operation of the analog/digital con-
verters.

The Audio Hub task is implemented in the file xua_audiohub.xc.

Table 30 shows the signals used to communicate audio between the XMOS device and
the external audio hardware.

Table 30: I²S Signals

Signal Description

LRCLK The word clock, transition at the start of a sample
BCLK The bit clock, clocks data in and out
SDIN Sample data in (from CODEC/ADC to the XMOS device)
SDOUT Sample data out (from the XMOS device to CODEC/DAC)
MCLK The master clock running the CODEC/DAC/ADC

The bit clock controls the rate at which data is transmitted to and from the external audio
hardware.

In the case where the xcore is the master, it divides the MCLK to generate the required
signals for both BCLK and LRCLK, with BCLK then being used to clock data in (SDIN) and
data out (SDOUT) of the external audio hardware.

Table 31 shows some example clock frequencies and divides for different sample rates:

Table 31: Clock Divide examples

Sample Rate (kHz) MCLK (MHz) BCLK (MHz) Divide

44.1 11.2896 2.819 4
88.2 11.2896 5.638 2
176.4 11.2896 11.2896 1
48 24.576 3.072 8
96 24.576 6.144 4
192 24.576 12.288 2

49

lib_xua: USB Audio components library

For xcore-200 devices themaster clockmust be supplied by an external source e.g. clock
generator, fixed oscillators, PLL etc. xcore.ai devices may use the integrated secondary
PLL.

Two master clock frequencies are required to support 44.1 kHz and 48 kHz audio fre-
quencies (e.g. 11.2896/22.5792MHz and 12.288/24.576MHz respectively). This master
clock input is then provided to the external audio hardware and the xcore device.

Port configuration (xcore master)

The default software configuration is of xcore being the I²S master. That is, the xcore
device provides the BCLK and LRCLK signals to the external audio hardware

xcore ports and clocks providemany valuable features for implementing I²S. This section
describes how these are configured and used to drive the I²S interface.

L8A-64-TQ128
p_mclk

p_sdin

clk_audio_mclk

clk_audio_bclk

Audio master clock

CODEC

 p_bclk

p_lrclk

p_sdout

Fig. 3: Ports and clocks (xcoremaster)

The code to configure the ports and clocks is in the ConfigAudioPorts() function.
Developers should not need to modify this.

The xcore inputs MCLK and divides it down to generate BCLK and LRCLK.

To achieve this MCLK is input into the device using the 1-bit port p_mclk. This is at-
tached to the clock blockclk_audio_mclk, which is in turn used to clock theBCLKport,
p_bclk. BCLK is used to clock the LRCLK (p_lrclk) and data signals SDIN (p_sdin)
and SDOUT (p_sdout).

Again, a clock block is used (clk_audio_bclk) which has p_bclk as its input and is
used to clock the ports p_lrclk, p_sdin and p_sdout. Fig. 3 shows the connectivity
of ports and clock blocks.

p_sdin and p_sdout are configured as buffered ports with a transfer width of 32, so
all 32 bits are input in one input statement. This allows the software to input, process
and output 32-bit words, whilst the ports serialize and deserialize to the single I/O pin
connected to each port.

Unlike previous xcore devices, xcore-200 (XS2 architecture) and xcore.ai (XS3 architec-
ture) series devices have the ability to divide an external clock in a clock-block.

50

lib_xua: USB Audio components library

The bit clock outputs 32 clock cycles per sample. In the special case where the di-
vide is 1 (i.e. the bit clock frequency equals the master clock frequency), the p_bclk
port is set to a special mode where it simply outputs its clock input (i.e. p_mclk). See
configure_port_clock_output() in xs1.h for details.

p_lrclk is clocked by p_bclk. In I²S mode the port outputs the pattern 0x7fffffff
followed by 0x80000000 repeatedly. This gives a signal that has a transition one bit-
clock before the data (as required by the I²S standard) and alternates between high and
low for the left and right channels of audio.

Changing audio sample frequency

When the host changes sample frequency, a new frequency is sent to the audio driver
thread by Endpoint 0 (via the buffering threads and mixer).

First, a change of sample frequency is reported by sending the new frequency over an XC
channel. The audio thread detects this by checking for the presence of a control token
on the channel channel

Upon receiving the change of sample frequency request, the audio thread stops the
I²S/TDM interface and calls the CODEC/port configuration functions.

Once this is complete, the I²S/TDM interface (i.e. themain loop inAudioHub) is restarted
at the new frequency.

51

lib_xua: USB Audio components library

7.2 Endpoint 0: Management and control

All USB devices must support a mandatory control endpoint, Endpoint 0. This controls
the management tasks of the USB device.

These tasks can be generally split into enumeration, audio configuration and firmware
upgrade requests.

Enumeration

When the device is first attached to a host, enumeration occurs. This process involves
the host interrogating the device as to its functionality. The device does this by presenting
several interfaces to the host via a set of descriptors.

During the enumeration process the host will issue various commands to the device
including assigning the device a unique address on the bus.

The endpoint 0 code runs in its own thread and follows a similar format to that
of the USB HID Mouse Device examples in lib_xud That is, a call is made to
USB_GetSetupPacket() to receive a command from the host. This populates a
USB_SetupPacket_t structure, which is then parsed.

There are many mandatory requests that a USB Device must support as required by
the USB Specification. Since these are required for all devices in order to function a
USB_StandardRequests() function is provided (see xud_device.xc) which imple-
ments all of these requests. This includes the following items:

· Requests for standard descriptors (Device descriptor, configuration descriptor etc)
and string descriptors

· USB GET/SET INTERFACE requests

· USB GET/SET_CONFIGURATION requests

· USB SET_ADDRESS requests

For more information and full documentation, including full worked examples of simple
devices, refer to lib_xud.

The USB_StandardRequests() function takes the device’s various descrip-
tors as parameters. These are passed from data structures found in the
xud_ep0_descriptors.h file. These data structures are fully customised based on
how the design is configured using various defines.

The USB_StandardRequests() functions returns a XUD_Result_t.
XUD_RESULT_OKAY to indicate that the request was fully handled without error
and no further action is required - The device should move to receiving the next request
from the host (via USB_GetSetupPacket()).

The function returns XUD_RES_ERR if the request was not recognised by the
USB_StandardRequests() function and a STALL has been issued.

The function may also return XUD_RES_RST if a bus-reset has been issued onto the bus
by the host and communicated from XUD to Endpoint 0.

Since the USB_StandardRequests() function STALLs an unknown request, the end-
point 0 code must first parse the USB_SetupPacket_t structure to handle device spe-
cific requests and then call USB_StandardRequests() as required.

52

lib_xua: USB Audio components library

Overriding standard requests

The USB Audio design “overrides” some of the requests handled by
USB_StandardRequests(), for example it uses the SET_INTERFACE request
to indicate if the host is streaming audio to the device. In this case the setup packet
is parsed, the relevant action taken, the USB_StandardRequests() is still called to
handle the response to the host.

Class requests

Before making the call to USB_StandardRequests() the setup packet is parsed for
Class requests. These are handled in functions such as AudioClassRequests_1(),
AudioClassRequests_2, DFUDeviceRequests() etc depending on the type of re-
quest.

Any device specific requests are handled - in this case Audio Class, MIDI class, DFU
requests etc.

Some of the common Audio Class requests and their associated behaviour will now be
examined.

Audio requests When the host issues an audio request (e.g. sample rate or vol-
ume change), it sends a command to Endpoint 0. Like all requests this is returned
from USB_GetSetupPacket(). After some parsing (namely as Class Request to an
Audio Interface) the request is handled by either the AudioClassRequests_1() or
AudioClassRequests_2() function (based on whether the device is running in Au-
dio Class 1.0 or 2.0 mode).

Note, Audio Class 1.0 Sample rate changes are send to the relevant endpoint, rather than
the interface - this is handled as a special case in he endpoint 0 request parsing where
AudioEndpointRequests_1() is called.

The AudioClassRequests_X() functions further parses the request in order to as-
certain the correct audio operation to execute.

Audio request: Set sample rate The AudioClassRequests_2() function
parses the passed USB_SetupPacket_t structure for a CUR request of type
SAM_FREQ_CONTROL to a Clock Unit in the device’s topology (as described in the device
descriptors).

The new sample frequency is extracted and passed via a channel to the rest of the
design - through the buffering code and eventually to the Audio Hub (I²S) thread.
The AudioClassRequests_2() function waits for a handshake to propagate back
through the system before signalling to the host that the request has completed suc-
cessfully. Note, during this time the USB library is NAKing the host, essentially holding
off further traffic/requests until the sample-rate change is fully complete.

Audio Request: Volume control When the host requests a volume change, it sends an
audio interface request to Endpoint 0. An array is maintained in the Endpoint 0 thread
that is updated with such a request.

When changing the volume, Endpoint 0 applies the master volume and channel volume,
producing a single volume value for each channel. These are stored in the array.

The volume will either be handled by the decouple thread or the mixer component
(if the mixer component is used). Handling the volume in the mixer gives the decoupler
more performance to handle more channels.

53

lib_xua: USB Audio components library

If the effect of the volume control array on the audio input and output is implemented by
the decoupler, the decoupler thread reads the volume values from this array. Note that
this array is shared between Endpoint 0 and the decoupler thread. This is done in a safe
manner, since only Endpoint 0 can write to the array, word update is atomic between
threads and the decoupler thread only reads from the array (ordering between writes
and reads is unimportant in this case). Inline assembly is used by the decoupler thread
to access the array, avoiding the parallel usage checks of XC.

If volume control is implemented in themixer, Endpoint 0 sends amixer command to the
mixer to change the volume. Mixer commands are described in Digital mixer.

7.3 Audio endpoints (Endpoint Buffer and Decoupler)

Endpoint Buffer

All endpoints other that Endpoint 0 are handled in one thread. This thread is implemented
in the file ep_buffer.xc. This thread communicates directly with the XUD library.

The USB buffer thread is also responsible for feedback calculation based on USB Start
Of Frame (SOF) notification and reads from the port counter of a port connected to the
master clock.

Decouple

The decoupler supplies the USB buffering thread with buffers to transmit/receive audio
data to/from the host. It marshals these buffers into FIFOs. The data from the FIFOs is
then sent over XC channels to other parts of the system as they need it. In asynchronous
mode this thread also determines the size of each packet of audio to send to the host
(thus matching the audio rate to the USB packet rate). The decoupler is implemented in
the file decouple.xc.

Audio buffering scheme

This scheme is executed by co-operation between the buffering thread, the decouple
thread and the XUD library.

For data going from the device to the host the following scheme is used:

1. The Decouple thread receives samples from the Audio Hub thread and puts them into
a FIFO. This FIFO is split into packets when data is entered into it. Packets are stored
in a format consisting of their length in bytes followed by the data.

2. When the Endpoint Buffer thread needs a buffer to send to the XUD thread (after send-
ing the previous buffer), the Decouple thread is signalled (via a shared memory flag).

3. Upon this signal from the Endpoint Buffer thread, the Decouple thread passes the next
packet from the FIFO to the Endpoint Buffer thread. It also signals to the XUD library
that the Endpoint Buffer thread is able to send a packet.

4. When the Endpoint Buffer thread has sent this buffer, it signals to the Decouple thread
that the buffer has been sent and the Decouple thread moves the read pointer of the
FIFO.

For data going from the host to the device the following scheme is used:

1. The Decouple thread passes a pointer to the Endpoint Buffer thread pointing into a
FIFO of data and signals to the XUD library that the Endpoint Buffer thread is ready to
receive.

54

lib_xua: USB Audio components library

2. The Endpoint Buffer thread then reads a USB packet into the FIFO and signals to the
Decouple thread that the packet has been read.

3. Upon receiving this signal the Decouple thread updates the write pointer of the FIFO
and provides a new pointer to the Endpoint Buffer thread to fill.

4. Upon request from the Audio Hub thread, the Decouple thread sends samples to the
Audio Hub thread by reading samples out of the FIFO.

Decoupler/Audio Hub interaction

To meet timing requirements of the audio system (i.e Audio Hub/Mixer), the Decoupler
threadmust respond to requests from the audio system to send/receive samples imme-
diately. An interrupt handler is set up in the decoupler thread to do this. The interrupt
handler is implemented in the function handle_audio_request.

The audio system sends a word over a channel to the decouple thread to request sample
transfer (using the build in outuint() function). The receipt of this word in the channel
causes the handle_audio_request interrupt to fire.

The first operation the interrupt handler does (once it inputs theword that triggered the in-
terrupt) is to send back a word acknowledging the request (if there was a change of sam-
ple frequency a control token would instead be sent—the audio system uses a testct() to
inspect for this case).

Sample transfer may now take place. First the Decouple thread sends samples from
host to device then the audio subsystem transfers samples destined for the host. These
transfers always take place in channel count sized chunks (i.e. NUM_USB_CHAN_OUT
and NUM_USB_CHAN_IN). That is, if the device has 10 output channels and 8 input chan-
nels, 10 samples are sent from the decouple thread and 8 received every interrupt.

The complete communication scheme is shown in Table 32 (for non sample frequency
change case).

Table 32: Decouple/Audio system channel communication

Decouple Audio System Note

outuint() Audio system requests sample exchange
inuint() Interrupt fires and inuint performed
outuint() Decouple sends ack

testct() Checks for CT indicating SF change
inuint() Word indication ACK input (No SF change)

inuint() outuint() Sample transfer (Device to Host)
inuint() outuint()
inuint() outuint()
…
outuint() inuint() Sample transfer (Host to Device)
outuint() inuint()
outuint() inuint()
outuint() inuint()
…

55

lib_xua: USB Audio components library

Note

The request and acknowledgement sent to/from the Decouple thread to the Audio
System is an “output underflow” sample value. If in PCM mode it will be 0, in DSD
mode it will be DSD silence. This allows the buffering system to output a suitable
underflow value without knowing the format of the stream (this is especially advan-
tageous in the DSD over PCM (DoP) case)

Asynchronous feedback

When built to operate in Asynchronous mode the device uses a feedback endpoint to
report the rate at which audio is output/input to/from external audio interfaces/devices.
This feedback is in accordance with the USB 2.0 Specification. This calculated feedback
value is also used to size packets to the host.

This asynchronous clocking schememeans that the device is the clockmaster and there-
fore a high-quality local master clock or a digital input stream can be used as the clock
source.

After each received USB Start Of Frame (SOF) token, the buffering thread takes a time-
stamp from a port clocked off the master clock. By subtracting the time-stamp taken at
the previous SOF, the number ofmaster clock ticks since the last SOF is calculated. From
this the number of samples (as a fixed point number) between SOFs can be calculated.
This count is aggregated over 128 SOFs and used as a basis for the feedback value.

The sending of feedback to the host is also handled in the Endpoint Buffer thread via an
explicit feedback IN endpoint.

If both input and output is enabled then the feedback can be implicit based on the
audio stream sent to the host. In practice though an explicit feedback endpoint
is normally used due to restrictions in Microsoft Windows operating systems (see
UAC_FORCE_FEEDBACK_EP).

USB rate control

The device must consume data from USB host and provide data to USB host at the
correct rate for the selected sample frequency. When running in asynchronous mode
the USB 2.0 Specification states that the maximum variation on USB packets can be
+/- 1 sample per USB frame (Synchronous mode mandates no variation other than that
required to match a sample rate that doesn’t cleanly divide the USB SOF period e.g.
44.1kHz)

High-speed USB frames are sent at 8kHz, so on average for 48kHz each packet contains
six samples per channel.

When running in Asynchronous mode, the audio clock may drift and run faster or slower
than the host. Hence, if the audio clock is slightly fast, the device may occasionally
input/output seven samples rather than six. Alternatively, it may be slightly slow and
input/output five samples rather than six. Allowed samples per packet in Async mode
shows the allowed number of samples per packet for each example audio frequency in
Asynchronous mode.

When running in Synchronous mode the audio clock is synchronised to the USB host
SOF clock. Hence, at 48kHz the device always expects six samples from, and always
sends six samples to the host.

See USB Device Class Definition for Audio Data Formats v2.0 section 2.3.1.1 for full de-
tails.

56

https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement

lib_xua: USB Audio components library

Table 33: Allowed samples per packet in Async mode

Frequency (kHz) Min Packet Max Packet

44.1 5 6
48 5 7
88.2 10 11
96 11 13
176.4 20 21
192 23 25

To implement this control, the Decoupler thread uses the feedback value calculated in
the EP Buffering thread. This value is used to work out the size of the next packet it will
insert into the audio FIFO.

Note

In Synchronous mode the same system is used, but the feedback value simply uses
a fixed value rather than one derived from the master clock port.

57

lib_xua: USB Audio components library

7.4 XMOS USB Device (XUD) library

All low level communicationwith the USB host is handled by the XMOSUSBDevice (XUD)
library - lib_xud

The XUD_Main() function runs in its own thread and communicates with endpoint
threads though a mixture of shared memory and channel communications.

For more details and full XUD API documentation please refer to lib_xud.

Fig. 1 shows the XUD library communicating with two other threads:

· Endpoint 0: This thread controls the enumeration/configuration tasks of the USB de-
vice.

· Endpoint Buffer: This thread sends/receives data packets from the XUD library. The
thread receives audio data from the AudioHub, MIDI data from the MIDI thread etc.

58

https://www.xmos.com/file/lib_xud
https://www.xmos.com/file/lib_xud

lib_xua: USB Audio components library

7.5 External clock recovery (Clock Gen)

To provide an audio master clock an application may use selectable oscillators, clock
generation IC or, in the case of xcore.ai devices, an integrated secondary PLL, to generate
fixed master clock frequencies.

It may also use an external PLL/Clock Multiplier to generate a master clock based on a
reference from the xcore.

Using the internal secondary PLL on an external PLL/Clock Multiplier allows an Asyn-
chronous mode design to lock to an external clock source from a digital stream (e.g.
S/PDIF or ADAT input). lib_xua supports the Cirrus Logic CS2100 device or use of
lib_sw_pll (xcore.ai only) for this purpose. Other devicesmay be supported via codemod-
ification.

The Clock Recovery thread (Clock Gen) is responsible for either generating the reference
frequency to the CS2100 device or drivinglib_sw_pll from timemeasurements based
on the local master clock and the time of received samples. Clock Gen (via CS2100 or
lib_sw_pll) generates the master clock used over the whole design. This thread also
serves as a smaller buffer between ADAT and S/PDIF receiving threads and the Audio
Hub thread.

When using lib_sw_pll (xcore.ai only) a further thread is instantiated which performs
the sigma-delta modulation of the xcore PLL to ensure the lowest jitter over the audio
band. See lib_sw_pll documentation for further details.

When running in Internal Clockmode this thread simply generates this clock using a local
timer, based on the xcore’s internal 100 MHz reference clock.

When running in an external clock mode (i.e. S/PDIF Clock” or “ADAT Clock” mode) sam-
ples are received from the S/PDIF and/or ADAT receive thread. The external frequency is
calculated through counting samples in a given period. Either the reference clock to the
CS2100 is then generated based on the reception of these samples or the timing infor-
mation is provided to lib_sw_pll to generate the phase-locked clock on-chip (xcore.ai
only).

If an external stream becomes invalid, the Internal Clock timer event will fire to ensure
that valid master clock generation continues regardless of cable unplugs etc. Efforts
are made to ensure that the transitions between these clocks are relatively seamless.
Additionally efforts are also made to try and keep the jitter on the reference clock as low
as possible, regardless of activity level of the Clock Gen thread. The is achieved though
the use of port times to schedule pin toggling rather than directly outputting to the port
in the case of using the CS2100. For lib_sw_pll cases the last setting is kept for the
sigma-delta modulator ensuring clock continuity.

The Clock Gen thread gets clock selection Get/Set commands from Endpoint 0 via the
c_clk_ctl channel. This thread also records the validity of external clocks, which is
also queried through the same channel from Endpoint 0. Note, the Internal Clock is
always reported as being valid. It should be noted that the device always reports the
current device sample rate regardless of the clock being interrogated. This results in
improved user experience for most driver/operating system combinations

To inform the host of any status change, the Clock Gen thread can also cause the Decou-
ple thread to request an interrupt packet on change of clock validity. This functionality is
based on the Audio Class 2.0 status/interrupt endpoint feature.

59

https://www.xmos.com/file/lib_sw_pll

lib_xua: USB Audio components library

Note

When running in Synchronous mode external digital input streams are currently not
supported. Such a feature would require sample-rate conversion to covert from the
S/PDIF or ADAT clock domain to the USB host clock domain. As such this thread is
not used in a Synchronous mode device.

7.6 Digital mixer

The Mixer thread(s) take outgoing audio from the Decouple thread and incoming audio
from the Audio Hub thread. It then applies the volume to each channel and passes in-
coming audio on to Decouple and outgoing audio to Audio Hub. The volume update is
achieved using the built-in 32bit to 64bit signed multiply-accumulate function (macs).
The mixer is implemented in the file mixer.xc.

The mixer takes (up to) two threads and can perform eight mixes with up to 18 inputs at
sample rates up to 96kHz and twomixes with up to 18 inputs at higher sample rates. The
component automatically reverts to generating two mixes when running at the higher
rate.

The mixer can take inputs from either:

· The USB outputs from the host—these samples come from the Decouple thread.

· The inputs from the audio interfaces on the device—these samples come from the
Audio Hub thread and includes samples from digital input streams.

Since the sumof these inputsmay bemore than the 18 possiblemix inputs to eachmixer,
there is a mapping from all the possible inputs to the mixer inputs.

After the mix occurs, the final outputs are created. There are two possible output desti-
nations for each mix.

· The USB inputs to the host—these samples are sent to the Decouple thread.

· The outputs to the audio interface on the device—these samples are sent to the Audio
Hub thread

For each possible output from the device, a mapping exists to inform the mixer what its
source is. The possible sources are the output from the USB host, the inputs from the
Audio Hub thread or the outputs from the mixes.

Essentially the mixer/router can be configured such that any device input can be used
as an input to any mix or routed directly to any device output. Additionally, any device
output can be derived from any mixer output or any device input.

As mentioned in Audio Request: Volume control, the mixer can also handle processing of
volume controls. If the mixer is configured to handle volume but the number of mixes is
set to zero (such that the thread is solely doing volume setting) then the component will
use only one thread. This is sometimes a useful configuration for large channel count
devices since it offloads volume processing from the buffering sub-system.

A sequence diagram showing the communication between Audio Hub, Decouple and
mixer threads is shown in Fig. 4. mixer1 thread exchanges data with Decouple and
Audio Hub alongwith any volume control operations and performs themixing operations
for the even output channel numbers. The mixing for the odd channels is offloaded to
the mixer2 thread.

60

lib_xua: USB Audio components library

Fig. 4: Mixer communication sequence diagram

61

lib_xua: USB Audio components library

The mixer can also be configured in passthrough mode (MAX_MIX_COUNT = 0), as
shown in Fig. 5. In this mode, the mixer2 thread is not present and the mixer1 exchanges
data with Audio Hub and Decouple along with any volume control operations without
doing any actual mixing.

Fig. 5: Mixer in passthrough mode

62

lib_xua: USB Audio components library

Control

The mixer tasks can receive the control commands from the host via USB Control Re-
quests to Endpoint 0. The Endpoint 0 thread relays these to the Mixer threads(s) via a
channel (c_mix_ctl). These commands are described in Table 34.

Table 34: Mixer control commands

Command Description

SET_SAMPLES_TO_HOST_MAP Sets the source of one of the audio streams going to the host.
SET_SAMPLES_TO_DEVICE_MAP Sets the source of one of the audio streams going to the audio driver.
SET_MIX_MULT Sets the multiplier for one of the inputs to a mixer.
SET_MIX_MAP Sets the source of one of the inputs to a mixer.
SET_MIX_IN_VOL If volume adjustment is being done in the mixer, this command sets

the volume multiplier of one of the USB audio inputs.
SET_MIX_OUT_VOL If volume adjustment is being done in the mixer, this command sets

the volume multiplier of one of the USB audio outputs.

Host control

The mixer can be controlled from a host PC by sending requests to Endpoint 0. XMOS
provides a simple command line based sample application demonstrating how themixer
can be controlled. This is intended as an example of how you might add mixer control
to your own control application. It is not intended to be exposed to end users.

For details, consult the README file in the host_usb_mixer_control directory. A list of
arguments can also be seen with:
$./xmos_mixer --help

The main requirements of this control utility are to

· Set the mapping of input channels into the mixer

· Set the coefficients for each mixer output for each input

· Set the mapping for physical outputs which can either come directly from the inputs
or via the mixer.

Note

The flexibility within this configuration space is such that there are often multiple
ways of producing the desired result. Product developers may only want to expose
a subset of this functionality to their end users.

Whilst using the XMOS host control example application, consider the example of setting
the mixer to perform a loop-back from analogue inputs 1 & 2 to analogue outputs 1 & 2.

63

lib_xua: USB Audio components library

Note

The command outputs shown are examples; the actual output will depend on the
mixer configuration.

The following will show the index for each device output along with which channel is
currently mapped to it. In this example the analogue outputs 1 & 2 are 0 & 1 respectively:
$./xmos_mixer --display-aud-channel-map

Audio Output Channel Map

0 (DEVICE OUT - Analogue 1) source is 0 (DAW OUT - Analogue 1)
1 (DEVICE OUT - Analogue 2) source is 1 (DAW OUT - Analogue 2)
2 (DEVICE OUT - SPDIF 1) source is 2 (DAW OUT - SPDIF 1)
3 (DEVICE OUT - SPDIF 2) source is 3 (DAW OUT - SPDIF 2)
$ _

The DAW Output Map can be seen with:
$./xmos_mixer --display-daw-channel-map

DAW Output To Host Channel Map

0 (DEVICE IN - Analogue 1) source is 4 (DEVICE IN - Analogue 1)
1 (DEVICE IN - Analogue 2) source is 5 (DEVICE IN - Analogue 2)
$ _

Note

In both cases, by default, these bypass the mixer.

The following commandwill list the channelswhich can bemapped to the device outputs
from the Audio Output Channel Map. Note that, in this example, analogue inputs 1 & 2
are source 4 & 5 and Mix 1 & 2 are source 6 & 7:
$./xmos_mixer --display-aud-channel-map-sources

Audio Output Channel Map Source List

0 (DAW OUT - Analogue 1)
1 (DAW OUT - Analogue 2)
2 (DAW OUT - SPDIF 1)
3 (DAW OUT - SPDIF 2)
4 (DEVICE IN - Analogue 1)
5 (DEVICE IN - Analogue 2)
6 (MIX - Mix 1)
7 (MIX - Mix 2)
$ _

Using the indices from the previous commands, we will now re-map the first two mixer
channels (Mix 1 & Mix 2) to device outputs 1 & 2:
$./xmos_mixer --set-aud-channel-map 0 6
$./xmos_mixer --set-aud-channel-map 1 7
$ _

The effect of this can be confirmed by re-checking the map:
$./xmos_mixer --display-aud-channel-map

Audio Output Channel Map

0 (DEVICE OUT - Analogue 1) source is 6 (MIX - Mix 1)
1 (DEVICE OUT - Analogue 2) source is 7 (MIX - Mix 2)

(continues on next page)

64

lib_xua: USB Audio components library

(continued from previous page)
2 (DEVICE OUT - SPDIF 1) source is 2 (DAW OUT - SPDIF 1)
3 (DEVICE OUT - SPDIF 2) source is 3 (DAW OUT - SPDIF 2)
$ _

Analogue outputs 1 & 2 are now derived from the mixer, rather than directly from USB.
However, since the mixer is mapped, by default, to just pass the USB channels through
to the outputs no functional change will be observed.

The mixer nodes need to be individually set. The nodes in mixer_id 0 can be displayed
with the following command:
$./xmos_mixer --display-mixer-nodes 0

Mixer Values (0)

Mixer outputs
1 2

DAW - Analogue 1 0:[0000.000] 1:[-inf]
DAW - Analogue 2 2:[-inf] 3:[0000.000]
DAW - SPDIF 1 4:[-inf] 5:[-inf]
DAW - SPDIF 2 6:[-inf] 7:[-inf]
AUD - Analogue 1 8:[-inf] 9:[-inf]
AUD - Analogue 2 10:[-inf] 11:[-inf]

$ _

Note

TheUSBaudio reference design has only one unit so themixer_id argument should
always be 0.

With mixer outputs 1 & 2 mapped to device outputs analogue 1 & 2; to get the audio from
the analogue inputs to device outputs mixer_id 0 node 8 and node 11 need to be set to
0db:
$./xmos_mixer --set-value 0 8 0
$./xmos_mixer --set-value 0 11 0
$ _

At the same time, the original mixer outputs can be muted:
$./xmos_mixer --set-value 0 0 -inf
$./xmos_mixer --set-value 0 3 -inf
$ _

Now audio inputs on analogue 1 and 2 should be heard on outputs 1 and 2 respectively.

As mentioned above, the flexibility of the mixer is such that there will be multiple ways to
create a particular mix. Another option to create the same routing would be to change
the mixer sources such that mixer outputs 1 and 2 come from the analogue inputs 1 and
2.

To demonstrate this, the changes documented above should be undone (resetting the
device will yield the same result):
$./xmos_mixer --set-value 0 8 -inf
$./xmos_mixer --set-value 0 11 -inf
$./xmos_mixer --set-value 0 0 0
$./xmos_mixer --set-value 0 3 0
$ _

The mixer should now have the default values. The sources for mixer 0 output 1 and 2
can now be changed using indices from the Audio Output Channel Map Source list:

65

lib_xua: USB Audio components library

$./xmos_mixer --set-mixer-source 0 0 4

Set mixer(0) input 0 to device input 4 (AUD - Analogue 1)
$./xmos_mixer --set-mixer-source 0 1 5

Set mixer(0) input 1 to device input 5 (AUD - Analogue 2)
$ _

Re-running the following command will show that the first column now has “AUD - Ana-
logue 1 and 2” rather than “DAW (Digital Audio Workstation i.e. the host) - Analogue 1 and
2” confirming the newmapping. Again, by playing audio into analogue inputs 1/2 this can
be heard looped through to analogue outputs 1/2:
$./xmos_mixer --display-mixer-nodes 0

66

lib_xua: USB Audio components library

7.7 S/PDIF transmit

lib_xua supports the development of devices with S/PDIF transmit through the use of
lib_spdif. The XMOS S/SPDIF transmitter component runs in a single thread and sup-
ports sample-rates upto 192 kHz.

The S/PDIF transmitter thread takes PCMaudio samples via a channel and outputs them
in S/PDIF format to a port. A lookup table is used to encode the audio data into the
required format.

It receives samples from the Audio I/O thread two at a time (for left and right). For each
sample, it performs a lookup on each byte, generating 16 bits of encoded data which it
outputs to a port.

S/PDIF sends data in frames, each containing 192 samples of the left and right channels.

Audio samples are encapsulated into S/PDIF words (adding preamble, parity, channel
status and validity bits) and transmitted in biphase-mark encoding (BMC) with respect
to an externalmaster clock.

Table 35: S/PDIF capabilities

Sample frequencies 44.1, 48, 88.2, 96, 176.4, 192 kHz
Master clock ratios 128x, 256x, 512x
Library lib_spdif

Clocking

PORT

PORT D-type

MCLKXCORE Tile

S/PDIF
TX

S/PDIF
DATA

via clock block

Fig. 6: D-Type Jitter Reduction

The S/PDIF signal is output at a rate dictated by the external master clock. The master
clock must be 1x 2x or 4x the BMC bit rate (that is 128x 256x or 512x audio sample rate,
respectively). For example, theminimummaster clock frequency for 192kHz is therefore
24.576 MHz.

This resamples the master clock to its clock domain (oscillator), which introduces jitter
of 2.5-5 ns on the S/PDIF signal. A typical jitter-reduction scheme is an external D-type
flip-flop clocked from the master clock (as shown in Fig. 6).

Usage

The interface to the S/PDIF transmitter thread is via a normal channel using streaming
builtin functions (outuint, inuint). Data format should be 24-bit left-aligned in a 32-
bit word: 0x12345600

The following protocol is used on the channel:

67

https://www.xmos.com/file/lib_spdif

lib_xua: USB Audio components library

Table 36: S/PDIF Component Protocol

outct New sample rate command
outuint Sample frequency (Hz)
outuint Master clock frequency (Hz)
outuint Left sample
outuint Right sample
outuint Left sample
outuint Right sample
...
...

This communication is wrapped up in the API functions provided by lib_spdif.

Output stream structure

The stream is composed of wordswith the structure shown in Table 37. The channel sta-
tus bits are 0x0nc07A4, where c=1 for left channel, c=2 for right channel and n indicates
sampling frequency as shown in Table 38.

Table 37: S/PDIF stream structure

Bits

0:3 Preamble Correct B M W order, starting at sample 0
4:27 Audio sample Top 24 bits of given word
28 Validity bit Always 0
29 Subcode data (user bits) Unused, set to 0
30 Channel status See below
31 Parity Correct parity across bits 4:30

Table 38: Channel status bits

Frequency (kHz) n

44.1 0x0
48 0x2
88.2 0x8
96 0xA
176.4 0xC
192 0xE

7.8 S/PDIF receive

xcore devices can support S/PDIF receive up to 192 kHz - see lib_spdif for full specifica-
tions.

The S/PDIF receiver module uses a clock-block and a buffered one-bit port. The clock-
block is divided off a 100 MHz reference clock. The one bit port is buffered to 32 bits.
The receiver code uses this clock to over sample the input data.

68

https://www.xmos.com/file/lib_spdif

lib_xua: USB Audio components library

The receiver outputs audio samples over a streaming channel end where data can be
input using the built-in input operator. lib_spdif also provides API functions that wrap
up this communication.

The S/PDIF receive function never returns. The 32-bit value from the channel input com-
prises of fields shown in Table 39.

Table 39: S/PDIF receive word structure

Bits

0:3 A tag (see below)
4:28 PCM encoded sample value
29:31 User bits (parity, etc)

The tag has one of three values, as shown in Table 40.

Table 40: S/PDIF receive tags

Tag Meaning

FRAME_X Sample on channel 0 (Left for stereo)
FRAME_Y Sample on another channel (Right if for stereo)
FRAME_Z Sample on channel 0 (Left), and the first sample of a frame; can

be used if the user bits need to be reconstructed.

See S/PDIF, IEC 60958-3:2006, specification for further details on format, user bits etc.

Usage and integration

Since S/PDIF is a digital stream, the device’s master clock must be synchronised to it.
This is typically done with an external device or the xcore.ai secondary PLL. See External
clock recovery (Clock Gen).

Note

Due to the requirement for this clock recovery S/PDIF receive can only be used in
Asynchronous mode.

The S/PDIF receive function communicates with the Clock Gen thread, which in turn
passes audio data to the Audio Hub thread. The Clock Gen thread also handles locking
to the S/PDIF clock source. Again, see External clock recovery (Clock Gen).

The parity of each word/sample received is checked. This is done using the
spdif_rx_check_parity() function provided by lib_spdif:

/* Check parity and ignore if bad */
if(spdif_rx_check_parity(spdifRxData))

continue;

If bad parity is detected the word/sample is ignored, otherwise the tag is inspected for
channel (i.e. left or right) and the sample stored.

69

lib_xua: USB Audio components library

The following code snippet illustrates how the output of the S/PDIF receive component
is fundamentally used. Note the use of helper defines/macros for frame identification
and sample data extraction, provided by lib_spdif:
while(1)
{

c_spdif_rx :> data;

if(spdif_check_parity(data)
continue;

tag = data & SPDIF_RX_PREAMBLE_MASK;

/* Extract 24bit audio sample */
sample = SPDIF_RX_EXTRACT_SAMPLE(data);

switch(tag)
{
case SPDIF_FRAME_X:
case SPDIF_FRAME_X:
// Store left sample
break;

case SPDIF)FRAME_Z:
// Store right sample
break;

}
}

The Clock Gen thread stores samples in a small FIFO before they are communicated to
the Audio Hub thread.

70

lib_xua: USB Audio components library

7.9 MIDI

The MIDI thread implements a 31250 baud UART (8-N-1) for both input and output. It
uses a single dedicated thread which performs multiple functions:

· UART transmit (tx) peripheral.

· UART transmit FIFO of 1024 bytes (may be configured by the user).

· Decoding of USB MIDI message to bytes.

· UART receive (rx) peripheral.

· Packing of received MIDI bytes into USB MIDI messages/events.

It is connected via a channel to the Endpoint Buffer thread meaning that it can be placed
on any xcore tile in the system subject to resource availability.

The Endpoint Buffer thread implements the two Bulk endpoints (one In and one Out) as
well as interacting with small, shared-memory, FIFOs for each endpoint.

On receiving 32-bit USB MIDI events from the Endpoint Buffer thread over the channel,
the MIDI thread parses these and translates them to 8-bit MIDI messages which are
sent out over the UART. Up to 1024 bytes may be buffered by the MIDI task for outgoing
messages in the default configuration. If the outgoing buffer is full then it will cause
the USB endpoint to be NACKed which provides flow control in the case that the host
application sends messages faster than the UART can transmit them. This is important
because the USB bandwidth far exceeds the MIDI UART bandwidth by many orders of
magnitude. The combination of buffering and flow control ensures outgoing messages
are not dropped during normal operation.

Incoming 8-bit MIDI messages from the UART receiver are packed into 32-bit USB MIDI
events and passed on to the Endpoint Buffer thread. Since the rate of ingress to the MIDI
port is tiny in comparison to the host USB bandwidth, no buffering is required in the MIDI
thread and the MIDI events are always forwarded on directly to USB immediately.

AllMIDImessage types are supported includingSysex (MIDI SystemExclusive) strings al-
lowing custom function such as bank updates and patches, backup and device firmware
upgrade (DFU) where supported by the MIDI device.

The MIDI thread is implemented in the file usb_midi.xc and the USB buffering is han-
dled in the file ep_buffer.xc.

71

lib_xua: USB Audio components library

7.10 PDM microphones

lib_xua is capable of integrating with PDM microphones. The PDM stream from the
microphones is converted to PCM and output to the host via USB.

Interfacing to the PDM microphones is done using the XMOS microphone array library
(lib_mic_array). lib_mic_array is designed to allow interfacing to PDMmicrophones
coupled to efficient decimation filters at a user configurable output sample rate. Cur-
rently dynamic sample rate changing is not supported.

Note

The lib_mic_array library is only available for xcore.ai series devices since it uses
the Vector Processing Unit of the XS3 architecture.

Up to eight PDM microphones can be attached the PDM interface
(mic_array_task()) but it is possible to extend this.

After PDM capture and decimation to the output sample-rate various other steps take
place e.g. DC offset elimination etc. Please refer to the documentation provided with
lib_mic_array for further implementation detail and a complete feature set.

By default the sample rates supported are 16 kHz, 32 kHz and 48 kHz although other
rates are supportable with some modifications.

Please see AN00248 Using lib_xua with lib_mic_array for a practical example of this fea-
ture.

Hardware characteristics

The PDMmicrophones require a clock input and provide the PDM signal on a data output.
All of the PDM microphones must share the same clock signal (buffered on the PCB as
appropriate), and output onto the data wire(s) that are connected to the capture port.
The lines required to interface with PDM microphones are listed in Table 41.

Table 41: PDM microphone data and signal wires

Signal Description

CLOCK The PDM clock the used by the microphones to drive the data out.
DQ_PDM The data from the PDMmicrophones on the capture port.

Note

The clocking for PDMmicrophonesmay be single data rate (onemicrophone per pin)
or double data rate (twomicrophones per pin clocking on alternate edges). By default
lib_xua assumes double data rate which provides more efficient port usage.

No arguments are passed into lib_mic_array. The library is configured statically us-
ing the following defines in xua_conf.h:

· MIC_ARRAY_CONFIG_PORT_MCLK - The port resource for the MCLK from which the
PDM_CLK is derived. Normally XS1_PORT_1D on Tile[1].

72

https://www.xmos.com/file/lib_mic_array
https://github.com/xmos/lib_xua/tree/develop/examples/AN00248_xua_example_pdm_mics

lib_xua: USB Audio components library

· MIC_ARRAY_CONFIG_PORT_PDM_CLK - The port resourcewhich drives out the PDM
clock.

· MIC_ARRAY_CONFIG_PORT_PDM_DATA - The port used to receive PDM data. May
be 1 bit, 4 bit or 8 bits wide.

· MIC_ARRAY_CONFIG_CLOCK_BLOCK_A - The clock block used to generate the PDM
clock signal.

· MIC_ARRAY_CONFIG_CLOCK_BLOCK_B - The clock block used to capture the PDM
data (Only needed if DDR is used).

· XUA_PDM_MIC_FREQ - The output sample rate of lib_mic_array.

Optionally, the following defines may be overridden if needed:

· MIC_ARRAY_CONFIG_MCLK_FREQ - The system MCLK frequency in Hz, usually set
to XUA_PDM_MIC_FREQ.

· MIC_ARRAY_CONFIG_PDM_FREQ - The PDM clock frequency in Hz. Usually set to
3072000.

· MIC_ARRAY_CONFIG_USE_DC_ELIMINATION - Whether or not to run a DC elimina-
tion filter. Set to 1 by default.

· MIC_ARRAY_CONFIG_USE_DDR - Whether or not to use Double Data Rate data cap-
ture on the PDMmicrophones. Set to 1 by default.

For full details of the effect of these defines please refer to the lib_mic_array documen-
tation.

Usage & integration

A PDM microphone wrapper is called from main() and takes one channel argument
connecting it to the rest of the system:

mic_array_task(c_pdm_pcm);

The implementation of this function can be found in the file mic_array_task.c but it
nominally takes one hardware thread.

Note, it is assumed that the system shares a global master-clock, therefore no additional
buffering or rate-matching/conversion is required. This ensures the PDMsubsystemand
XUA Audiohub are synchronous.

Two weak callback APIs are provided which optionally allow user code to be executed
at startup (post PDM microphone initialisation) and after each sample frame is formed.
These can be useful for custom hardware initialisation required by the PDMmicrophone
or post processing such as gain control before samples are forwarded to XUA:
void user_pdm_init();
void user_pdm_process(int32_t mic_audio[MIC_ARRAY_CONFIG_MIC_COUNT]);

Be aware that user_pdm_process() is called in the main Audio Hub loop and so and
processing should be kept very short to avoid breaking timing of I²S etc. Typically a small
fraction of sample period is acceptable although the headroom is much larger at lower
sample rates. The array of samples mic_audio can modified in-place.

73

https://www.xmos.com/file/lib_mic_array
https://www.xmos.com/file/lib_mic_array

lib_xua: USB Audio components library

7.11 Audio controls via Human Interface Device (HID)

The design supports simple audio controls such as play/pause, volume up/down etc via
the USB Human Interface Device Class Specification.

This functionality is enabled by setting the HID_CONTROLS define to 1. Setting to 0
disables this feature.

When turned on the following items are enabled:

1. HID descriptors are enabled in the Configuration Descriptor informing the host that
the device has a HID interface.

2. A Get Report Descriptor request is enabled in endpoint0.

3. Endpoint data handling is enabled in the buffer thread.

The Get Descriptor Request enabled in endpoint 0 returns the report descriptor for the
HID device. This details the format of the HID reports returned from the device to the
host. It maps a bit in the report to a function such as play/pause.

The USB Audio Framework implements a report descriptor that should fit most basic
audio device controls. If further controls are necessary the HID Report Descriptor in
hid_report_descriptor.h should be modified. The default report size is 1 byte with the for-
mat as follows:

Table 42: Default HID Report Format

Bit Function

0 Play/Pause
1 Scan Next Track
2 Scan Prev Track
3 Volume Up
4 Volume Down
5 Mute
6-7 Unused

On each HID report request from the host the function UserHIDGetData() is called
from XUA_Buffer_Ep(). This function is passed an array hidData[] by reference.
The programmer should report the state of the buttons into this array. For example, if a
volume up command is desired, bit 3 should be set to 1, else 0.

Since the UserHIDGetData() function is called from the XUA_Buffer_Ep() thread,
care should be taken not to add to much execution time to this function since this could
cause issues with servicing other endpoints.

7.12 Device Firmware Upgrade (DFU) over USB

The DFU implementation in lib_xua is compliant with version 1.1 of Universal Serial
Bus Device Class Specification for Device Firmware Upgrade.

This section describes the DFU implementation in lib_xua. For information about us-
ing a DFU loader to send DFU commands to the USB Audio device, refer to appnote
AN02019: Using Device Firmware Upgrade (DFU) in USB Audio.

74

https://www.usb.org/document-library/device-class-definition-hid-111
https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://www.usb.org/sites/default/files/DFU_1.1.pdf

lib_xua: USB Audio components library

The USB device descriptors expose a DFU interface that handles updates to the boot
image of the device over USB.

The host sends DFU requests as Host to Device Class requests to the DFU interface. On
receiving DFU commands from the host, the DFUDeviceRequests function is called
from the Endpoint 0 thread. This function calls the DFU handler functions over the
dfuInterface XC interface. The DFU handler thread, DFUHandler that implements
the server side of the dfuInterface has to be scheduled on the same tile as the flash
so it can access the flash memory. The dfuInterface interface essentially links USB
to the XMOS flash user library.

The DFU interface is enabled by default (See XUA_DFU_EN define in xua_conf_default.h).
When DFU is enabled, there are two sets of descriptors that the device can export, de-
pending on themode in which it operates. There is a descriptor set for the runtimemode,
which is the mode the device normally operates in and a set of descriptors for the DFU
mode.

In the runtime mode, the DFU interface is one of potentially multiple interfaces that the
device exposes. Fig. 7 shows theDFU interface descriptorswhen enumerating in runtime
mode as seen in a Beagle USB analyser trace.

Fig. 7: DFU interface when part of runtime mode descriptor set

Note the bInterfaceProtocol field set to Runtime.

75

https://www.xmos.com/file/libflash-api#libflash-api
https://www.totalphase.com/products/data-center/

lib_xua: USB Audio components library

In DFU mode, the device exports the DFU descriptor set. The DFU mode descriptors
specify only one interface, the DFU interface. Fig. 8 shows the DFU interface descriptors
when enumerating in DFU mode as seen in a Beagle USB analyser trace.

Fig. 8: DFU interface when part of DFU mode descriptor set

Note the bInterfaceProtocol field set to DFU mode.

Before starting the DFU upload or download process, the host sends a DFU_DETACH
command to detach the device from runtime to DFU mode. In response to the
DFU_DETACH command, the device reboots itself into DFU mode and enumerates us-
ing the DFU mode descriptors. Once the device is in DFU mode, the DFU interface can
accept commands defined by the DFU 1.1 class specification.

After detaching the device, the host proceedswith the DFUdownload/upload commands
towrite/read the firmware upgrade image to/from the device. Once the DFU download or
upload process is complete, the host sends a DETACH command, and the device reboots
itself back in runtime mode.

Note

It is recommended that the runtime mode and DFU mode descriptors have differ-
ent product IDs. This is to ensure that the host operating system loads the correct

76

https://www.usb.org/sites/default/files/DFU_1.1.pdf

lib_xua: USB Audio components library

driver as the device switches between runtime and DFU modes. The runtime and
DFU PID are defined as overridable defines PID_AUDIO_2 and DFU_PID respec-
tively in xua_conf_default.h. Users can define custom PIDs in their application
by overriding these defines.

During the DFU download process, on receiving the first DFU_DNLOAD com-
mand (wBlockNum = 0), the device erases FLASH_MAX_UPGRADE_SIZE
bytes of the upgrade section of the flash. This is done by repeatedly calling
flash_cmd_start_write_image and can take several seconds. To avoid the
DFU_DNLOAD request timing out, the flash erase is instead done in the DFU_GETSTATUS
handling code for block 0. So for block 0, the device ends up returning the status as
dfuDNBUSY several times while the flash erase is in progress. Fig. 9 describes the DFU
download process.

Fig. 9: Message sequence chart for the DFU download operation

77

lib_xua: USB Audio components library

Note

Once a valid upgrade image is loaded in flash, on subsequent reboots, the device will
boot from the upgrade image. If the upgrade image is invalid, the factory image will
be loaded. To revert back to the factory image, download an invalid upgrade file to
the device. For example, DFU download a file containing the word 0xFFFFFFFF to
the device.

78

lib_xua: USB Audio components library

Enumerating as a WinUSB device on Windows

The Endpoint 0 code supports extra descriptors called the Microsoft Operating System
(MSOS) descriptors that allow the device to enumerate as aWinUSB device onWindows.
The MSOS descriptors report the compatible ID as WINUSB which enables Windows to
load Winusb.sys as the device’s function driver without a custom INF file. This means
that when the device is connected, the DFU interface shows up as WinUSB compatible
automatically, without requiring the user to manually load a driver for it using a utility like
Zadig.

The MSOS descriptors are present in the file xua_ep0_msos_descriptors.h. In
order to enumerate as a device capable of supplying MSOS descriptors, the device’s
bcdUSB version in the device descriptor has to be 0x0201. On seeing the bcdUSB ver-
sion as 0x0201 when the device enumerates, the host requests for a descriptor called
the Binary Device Object Store (BOS) descriptor. This descriptor contains information
about the capability of the device. It specifies the device to be MSOS 2.0 capable and
contains information about the vendor request code (bRequest) and the request length
(wLength) that the host needs to use to when making a vendor request to query for the
MSOS descriptor.

The host then makes a vendor request with the bRequest and wLength as specified in
the BOS platform descriptor querying for the MSOS descriptor.

Warning

If writing a host application that also sends vendor requests to the device, users
should ensure that they do not use the bRequest that is reserved for the MSOS
descriptor. The MSOS descriptor vendor request’s bRequest is defined as the
REQUEST_GET_MS_DESCRIPTOR define in xua_ep0_msos_descriptors.h.
#define REQUEST_GET_MS_DESCRIPTOR 0x20

The MSOS descriptor reports the compatible ID asWINUSB for the DFU interface. It also
specifies the device interfaceGUID in its registry property. TheGUID is required to access
the DFU interface from a user application running on the host (for example the Thesycon
DFU driver or the dfu-util DFU application)

Note

The default device interface GUID for the DFU interfaces is specified in
the WINUSB_DEVICE_INTERFACE_GUID_DFU define in xua_conf_default.h.
Users can override this by redefining WINUSB_DEVICE_INTERFACE_GUID_DFU in
the application. A utility such as guidgenerator can be used for generating a GUID.

Tip

The MSOS descriptors for reporting WinUSB compatibility are only relevant for Win-
dows.

79

https://learn.microsoft.com/en-us/windows-hardware/drivers/usbcon/microsoft-defined-usb-descriptors
https://learn.microsoft.com/en-us/windows-hardware/drivers/usbcon/microsoft-defined-usb-descriptors
https://guidgenerator.com/

lib_xua: USB Audio components library

7.13 Resource usage

The following table details the resource usage of each component of the reference de-
sign software. Note, memory usage is approximate and varies based on device used,
compiler settings etc.

Table 43: Resource Usage

Component Cores Memory (KB) Ports

XUD library 1 9 (6 code) USB ports
Endpoint 0 1 17.5 (10.5 code) none
USB Buffering 2 22.5 (1 code) 1 x n bit port
Audio Hub 1 8.5 (6 code) See Audio Hub and I²S
S/PDIF Tx 1 3.5 (2 code) 1 x 1 bit port
S/PDIF Rx 1 3.7 (3.7 code) 1 x 1 bit port
ADAT Rx 1 3.2 (3.2 code) 1 x 1 bit port
MIDI 1 6.5 (1.5 code) 2 x 1 bit ports
Mixer (up to) 2 8.7 (6.5 code)
ClockGen 1 2.5 (2.4 code)

These resource estimates are based on the multichannel reference design with all op-
tions of that design enabled. For fewer channels, the resource usage is likely to decrease.

Note

lib_xud requires an 85 MIPS core to function correctly (i.e. on a 600MHz part only
seven cores can run).

Note

Unlike other interfaces, since the USB PHY is internal, the USB ports are a fixed set
of ports and cannot be modified. See lib_xud documentation for full details.

80

lib_xua: USB Audio components library

8 API reference

8.1 Configuration defines

An application using the USB audio framework needs to have defines set for configura-
tion. Defaults for these defines are found in xua_conf_default.h.

These defines should be overridden in an optional header file xua_conf.h file or in the
application’s CMakeLists.txt for the relevant build configuration.

This section fully documents all of the settable defines and their default values (where
appropriate).

Code location (tile)

AUDIO_IO_TILE

Location (tile) of audio I/O. Default: 0.

XUD_TILE

Location (tile) of audio I/O. Default: 0.

MIDI_TILE

Location (tile) of MIDI I/O. Default: AUDIO_IO_TILE.

SPDIF_TX_TILE

Location (tile) of SPDIF Tx. Default: AUDIO_IO_TILE.

PDM_TILE

Location (tile) of PDM Rx. Default: AUDIO_IO_TILE.

PLL_REF_TILE

Location (tile) of reference signal to CS2100. Default: AUDIO_IO_TILE.

Channel counts

NUM_USB_CHAN_OUT

Number of output channels (host to device). Default: NONE (Must be defined by
app)

NUM_USB_CHAN_IN

Number of input channels (device to host). Default: NONE (Must be defined by
app)

I2S_CHANS_DAC
Number of I2S channesl to DAC/CODEC. Must be a multiple of 2.
Default: NONE (Must be defined by app)

81

lib_xua: USB Audio components library

I2S_CHANS_ADC
Number of I2S channels from ADC/CODEC. Must be a multiple of 2.
Default: NONE (Must be defined by app)

Frequencies and clocks

MAX_FREQ

Max supported sample frequency for device (Hz).
Default: 192000Hz

MIN_FREQ

Min supported sample frequency for device (Hz).
Default: 44100Hz

DEFAULT_FREQ
Default device sample frequency. A safe default should be used.
Default: MIN_FREQ

MCLK_441

Master clock defines for 44100 rates (in Hz).
Default: NONE (Must be defined by app)

MCLK_48

Master clock defines for 48000 rates (in Hz).
Default: NONE (Must be defined by app)

XUA_USE_SW_PLL
Enable/disable the use of the secondary/application PLL for generating and recov-
ering master-clocks. Only available on xcore.ai devices.
Default: Enabled (for xcore.ai devices)

Audio Class

AUDIO_CLASS
Legacy USB Audio Class version.
Default: 2 (Audio Class version 2.0)
Note: XUA_USB_AUDIO_CLASS_HS and XUA_USB_AUDIO_CLASS_FS are derived
from this value. Setting these defines directly will override this value.

XUA_AUDIO_CLASS_HS
Audio class version to run at HS.
Default: AUDIO_CLASS
Note: Set to 0 for no operation at HS.

82

lib_xua: USB Audio components library

XUA_AUDIO_CLASS_FS
Audio class version to run at FS.
Default: AUDIO_CLASS
Note: Set to 0 for no operation at FS.

Feature configuration

I²S/TDM

CODEC_MASTER

Defines whether XMOS device runs as master (i.e. drives LR and Bit clocks)
0: XMOS is I2S master. 1: CODEC is I2s master.
Default: 0 (XMOS is master)

XUA_I2S_N_BITS
Number of bits per channel for I2S/TDM. Supported values: 16/32-bit.
Default: 32 bits

XUA_PCM_FORMAT
Format of PCM audio interface. Should be set to XUA_PCM_FORMAT_I2S or
XUA_PCM_FORMAT_TDM.
Default: XUA_PCM_FORMAT_I2S

MIDI

MIDI
Enable MIDI functionality including buffering, descriptors etc. Default: DISABLED.

MIDI_RX_PORT_WIDTH

MIDI Rx port width (1 or 4bit). Default: 1.

S/PDIF

XUA_SPDIF_TX_EN

Enables SPDIF Tx. Default: 0 (Disabled)

SPDIF_TX_INDEX

Defines which output channels (stereo) should be output on S/PDIF. Note, Output
channels indexed from 0.
Default: 0 (i.e. channels 0 & 1)

XUA_SPDIF_RX_EN

Enables SPDIF Rx. Default: 0 (Disabled)

SPDIF_RX_INDEX
S/PDIF Rx first channel index, defineswhich channels S/PDIFwill be input on. Note,
indexed from 0.
Default: NONE (Must be defined by app when SPDIF_RX enabled)

83

lib_xua: USB Audio components library

ADAT

XUA_ADAT_RX_EN

Enables ADAT Rx. Default: 0 (Disabled)

ADAT_RX_INDEX
ADAT Rx first channel index. defines which channels ADAT will be input on. Note,
indexed from 0.
Default: NONE (Must be defined by app when XUA_ADAT_RX_EN is true)

PDM microphones

XUA_NUM_PDM_MICS
Number of PDM microphones in the design.
Default: 0

DFU

XUA_DFU_EN
Enable DFU functionality.
Default: 1 (Enabled)

HID

HID_CONTROLS
Enable HID playback controls functionality.
1 for enabled, 0 for disabled.
Default 0 (Disabled)

USB device configuration

VENDOR_STR
Vendor String used by the device. This is also pre-pended to various strings used
by the design.
Default: “XMOS”

VENDOR_ID

USB Vendor ID (or VID) as assigned by the USB-IF.
Default: 0x20B1 (XMOS)

PRODUCT_STR
USB Product String for the device. If defined will be used for both PROD-
UCT_STR_A2 and PRODUCT_STR_A1.
Default: Undefined

PRODUCT_STR_A2
Product string for Audio Class 2.0 mode.
Default: “XMOS xCORE (UAC2.0)”

84

lib_xua: USB Audio components library

PRODUCT_STR_A1
Product string for Audio Class 1.0 mode.
Default: “XMOS xCORE (UAC1.0)”

PID_AUDIO_1

USB Product ID (PID) for Audio Class 1.0 mode. Only required if
XUA_AUDIO_CLASS_FS == 1.
Default: 0x0003

PID_AUDIO_2

USB Product ID (PID) for Audio Class 2.0 mode.
Default: 0x0002

BCD_DEVICE
Device firmware version number in Binary Coded Decimal format: 0xJJMN where
JJ: major, M: minor, N: sub-minor version number.
NOTE: User code should not modify this but should modify BCD_DEVICE_J,
BCD_DEVICE_M, BCD_DEVICE_N instead
Default: XMOS USB Audio Release version (e.g. 0x0651 for 6.5.1).

Stream Formats

Output/playback

OUTPUT_FORMAT_COUNT
Number of supported output stream formats.
Values 1,2,3 supported
Default: 2

STREAM_FORMAT_OUTPUT_1_RESOLUTION_BITS

Sample resolution (bits) of output stream Alternate 1.
Default: 24 if Alternate 1 is PCM, else 32 if DSD/RAW
Note, 24 on the lowests alt in case of OUTPUT_FORMAT_COUNT = 1 leaving 24bit
as the designs default resolution.

STREAM_FORMAT_OUTPUT_2_RESOLUTION_BITS

Sample resolution (bits) of output stream Alternate 2.
Default: 16 if Alternate 2 is PCM, else 32 if DSD/RAW

STREAM_FORMAT_OUTPUT_3_RESOLUTION_BITS

Sample resolution (bits) of output stream Alternate 3.
Default: 32 if Alternate 2 is PCM, else 32 if DSD/RAW

HS_STREAM_FORMAT_OUTPUT_1_SUBSLOT_BYTES

Sample sub-slot size (bytes) of output stream Alternate 1 when running in high-
speed.

85

lib_xua: USB Audio components library

Default: 4 if resolution for Alternate 1 is 24bits, else resolution / 8
Note, the default catchs the 24bit special case where 4-byte subslot is nicer for our
32-bit machine. Typically do not care about this extra bus overhead at High-speed

HS_STREAM_FORMAT_OUTPUT_2_SUBSLOT_BYTES
Sample sub-slot size (bytes) of output stream Alternate 2 when running in high-
speed.
Default: 4 if resolution for Alternate 2 is 24bits, else resolution / 8
Note, the default catchs the 24bit special case where 4-byte subslot is nicer for our
32-bit machine. Typically do not care about this extra bus overhead at High-speed

HS_STREAM_FORMAT_OUTPUT_3_SUBSLOT_BYTES
Sample sub-slot size (bytes) of output stream Alternate 3 when running in high-
speed.
Default: 4 if resolution for Alternate 3 is 24bits, else resolution / 8
Note, the default catchs the 24bit special case where 4-byte subslot is nicer for our
32-bit machine. Typically do not care about this extra bus overhead at High-speed

FS_STREAM_FORMAT_OUTPUT_1_SUBSLOT_BYTES
Sample sub-slot size (bytes) of output stream Alternate 1 when running in full-
speed.
Note, in full-speed mode bus bandwidth is at a premium, therefore pack samples
into smallest possible sub-slot.
Default: STREAM_FORMAT_OUTPUT_1_RESOLUTION_BITS / 8

FS_STREAM_FORMAT_OUTPUT_2_SUBSLOT_BYTES
Sample sub-slot size (bytes) of output stream Alternate 2 when running in full-
speed.
Note, in full-speed mode bus bandwidth is at a premium, therefore pack samples
into smallest possible sub-slot.
Default: STREAM_FORMAT_OUTPUT_2_RESOLUTION_BITS / 8

FS_STREAM_FORMAT_OUTPUT_3_SUBSLOT_BYTES
Sample sub-slot size (bytes) of output stream Alternate 3 when running in full-
speed.
Note, in full-speed mode bus bandwidth is at a premium, therefore pack samples
into smallest possible sub-slot.
Default: STREAM_FORMAT_OUTPUT_3_RESOLUTION_BITS / 8

STREAM_FORMAT_OUTPUT_1_DATAFORMAT
Sample audio data-format if output stream Alternate 1.
Default: UAC_FORMAT_TYPEI_RAW_DATA when Alternate 1 is RAW/DSD else
UAC_FORMAT_TYPEI_PCM

STREAM_FORMAT_OUTPUT_2_DATAFORMAT
Sample audio data-format if output stream Alternate 2.
Default: UAC_FORMAT_TYPEI_RAW_DATA when Alternate 2 is RAW/DSD else
UAC_FORMAT_TYPEI_PCM

86

lib_xua: USB Audio components library

STREAM_FORMAT_OUTPUT_3_DATAFORMAT
Sample audio data-format if output stream Alternate 3.
Default: UAC_FORMAT_TYPEI_RAW_DATA when Alternate 3 is RAW/DSD else
UAC_FORMAT_TYPEI_PCM

Input/recording

INPUT_FORMAT_COUNT
Number of supported input stream formats. Default: 1.

STREAM_FORMAT_INPUT_1_RESOLUTION_BITS
Sample resolution (bits) of input stream Alternate 1.
Default: 24

HS_STREAM_FORMAT_INPUT_1_SUBSLOT_BYTES
Sample sub-slot size (bytes) of input stream Alternate 1 when running in high-
speed.
Default: 4 if resolution for Alternate 1 is 24bits, else resolution / 8
Note, the default catchs the 24bit special case where 4-byte subslot is nicer for our
32-bit machine. Typically do not care about this extra bus overhead at High-speed

FS_STREAM_FORMAT_INPUT_1_SUBSLOT_BYTES
Sample sub-slot size (bytes) of input streamAlternate 1 when running in full-speed.
Note, in full-speed mode bus bandwidth is at a premium, therefore pack samples
into smallest possible sub-slot.
Default: STREAM_FORMAT_INPUT_1_RESOLUTION_BITS / 8

STREAM_FORMAT_INPUT_1_DATAFORMAT
Sample audio data-format for input stream Alternate 1.
Default: UAC_FORMAT_TYPEI_PCM

Volume control

OUTPUT_VOLUME_CONTROL
Enable/disable output volume control including all processing and descriptor sup-
port.
Default: 1 (Enabled)

INPUT_VOLUME_CONTROL
Enable/disable input volume control including all processing and descriptor sup-
port.
Default: 1 (Enabled)

MIN_VOLUME
The minimum volume setting above -inf. This is a signed 8.8 fixed point number
that must be strictly greater than -128 (0x8000)
Default: 0x8100 (-127db)

87

lib_xua: USB Audio components library

MAX_VOLUME
The maximum volume setting. This is a signed 8.8 fixed point number.
Default: 0x0000 (0db)

VOLUME_RES
The resolution of the volume control in db as a 8.8 fixed point number.
Default: 0x100 (1db)

Mixing

MIXER
Enable “mixer” core.
Default: 0 (Disabled)

MAX_MIX_COUNT
Number of seperate mixes to perform.
Default: 8 if MIXER enabled, else 0

MIX_INPUTS
Number of channels input into the mixer.
Note, total number of mixer nodes is MIX_INPUTS * MAX_MIX_COUNT
Default: 18

MIN_MIXER_VOLUME
Theminimum volume setting for themixer unit above -inf. This is a signed 8.8 fixed
point number that must be strictly greater than -128 (0x8000)
Default: 0x8100 (-127db)

MAX_MIXER_VOLUME
Themaximumvolume setting for themixer. This is a signed 8.8 fixed point number.
Default: 0x0000 (0db)

VOLUME_RES_MIXER
The resolution of the volume control in db as a 8.8 fixed point number.
Default: 0x100 (1db)

Power

XUA_POWERMODE
Report as self or bus powered device. This affects descriptors and XUD usage and
is important for USB compliance.
Default: XUA_POWERMODE_BUS

88

lib_xua: USB Audio components library

XUA_CHAN_BUFF_CTRL

Enable power saving feature in XUA_Buffer_Decouple()
If set to 1 then a channel is instantiated between the XUA_Buffer_Ep() and
XUA_Buffer_Decouple() tasks (which together form the buffer between XUD and
Audio) that limits shared memory polling in XUA_Buffer_Ep() to occur only when a
change has been made by XUA_Buffer_Decouple(). This significantly reduces core
power at the cost of two channel ends on the USB_TILE.

89

lib_xua: USB Audio components library

8.2 User function definitions

The following functions can be defined by an application using lib_xua.

Note

Default, empty, implementations of these functions are provided in lib_xua. These
are marked as weak symbols so the application can simply define its own version of
them.

External audio hardware configuration functions

The following functions can be optionally used by the design to configure external audio
hardware. As a minimum, in most applications, it is expected that a implementation of
AudioHwConfig() will need to be provided.

void AudioHwInit(void)
User audio hardware initialisation code.
This function is called when the device starts up and should contain user code to
perform any required audio hardware initialisation

void AudioHwConfig(
unsigned samFreq,unsigned mClk,unsigned dsdMode,unsigned sam-
pRes_DAC,unsigned sampRes_ADC,

)
User audio hardware configuration code.
This function is called when on sample rate change and should contain user code
to configure audio hardware (clocking, CODECs etc) for a specific mClk/Sample
frequency. It is called from audiohub on AUDIO_IO_TILE.

Parameters

· samFreq – The new sample frequency (in Hz)
· mClk – The new master clock frequency (in Hz)
· dsdMode–DSDmode, DSD_MODE_NATIVE, DSD_MODE_DOP or

DSD_MODE_OFF
· sampRes_DAC – Playback sample resolution (in bits)
· sampRes_ADC – Record sample resolution (in bits)

void AudioHwConfig_Mute(void)
User code mute audio hardware.
This function is called before AudioHwConfig() and should contain user code to
mute audio hardware before a sample rate change in order to reduced audible pop-
s/clicks It is called from audiohub on AUDIO_IO_TILE.
Note, if using the application PLL of a xcore.ai device this function will be called
before the master-clock is changed

void AudioHwConfig_UnMute(void)
User code to un-mute audio hardware.
This function is called after AudioHwConfig() and should contain user code to un-
mute audio hardware after a sample rate change. It is called from audiohub on
AUDIO_IO_TILE.

90

lib_xua: USB Audio components library

void AudioHwShutdown(void)
User audio hardware de-initialisation code.
This function is called when streaming stops (device enumerated but audio is
idle) and should contain user code to perform any required audio hardware de-
initialisation. This can be useful for saving power in the audio sub-system. It is
called from audiohub on AUDIO_IO_TILE.
Note this callback will only be called if the XUA_LOW_POWER_NON_STREAMING
define is set, otherwise lib_xua assumes that I2S is always looping.

Audio stream start/stop functions

The following functions can be optionally used by the design. They can be useful for
mute lines etc.

void UserAudioStreamState(int inputActive, int outputActive)
User stream start code.
User code to perform any actions required at every stream start - either input or
output.
/param inputActive An input stream is active if 1, else inactive if 0 /paramOutputAc-
tive An output stream is active if 1, else inactive if 0

Host active functions

The following function can be used to signal that the device is connected to a valid host.

void UserHostActive(int active)
User host active code.
This function can be used to perform user defined actions based on host
present/not-present events. This function is called on a change in state.

Parameters

· active – Indicates if the host is active or not. 1 for active, else 0

HID controls

The following function is called when the device wishes to read physical user input (but-
tons etc). The function should write relevant HID bits into this array. The bit ordering and
functionality is defined by the HID report descriptor used.

size_t UserHIDGetData(
const unsigned id,unsigned char hidData[HID_MAX_DATA_BYTES],

)
Get the data for the next HID Report.

Parameters

· id– [in] TheHID Report ID (see 5.6, 6.2.2.7, 8.1 and 8.2 of the USB
Device Class Definition for HID 1.11) Set to zero if the application
provides only one HID Report which does not include a Report ID

· hidData – [out] The HID data If using Report IDs, this function
places the Report ID in the first element; otherwise the first ele-
ment holds the first byte of HID event data.

Return values
Zero – means no new HID event data has been recorded for the
given id

91

lib_xua: USB Audio components library

Returns
The length of the HID Report in the hidData argument

8.3 Component API

The following functions can be called from the top level main of an application and im-
plement the various components described in Software architecture.

When using the USB audio framework the c_ep_in array is always composed in the
following order:

· Endpoint 0 (in)

· Audio Feedback endpoint (if output enabled)

· Audio IN endpoint (if input enabled)

· MIDI IN endpoint (if MIDI enabled)

· Clock Interrupt endpoint

The array c_ep_out is always composed in the following order:

· Endpoint 0 (out)

· Audio OUT endpoint (if output enabled)

· MIDI OUT endpoint (if MIDI enabled)

void XUA_Endpoint0(
chanend c_ep0_out,chanend c_ep0_in,NULLABLE_RESOURCE(chanend,
c_aud_ctl),NULLABLE_RESOURCE(chanend, c_mix_ctl),NULLABLE_RESOURCE(chanend,
c_clk_ctl),NULLABLE_CLIENT_INTERFACE(i_dfu, dfuInterface),

)
Endpoint 0 task for USB Audio devices
Function implementing Endpoint 0 for enumeration, control and configuration of
USB audio devices. It uses the descriptors defined in xua_ep0_descriptors.
h.

Parameters

· c_ep0_out – Chanend connected to the XUD_Main() out end-
point array

· c_ep0_in – Chanend connected to the XUD_Main() in endpoint
array

· c_aud_ctl – Chanend connected to the decouple thread for
control audio (sample rate changes etc.). Note when nulled, the
audio device only supports single sample rate/format and DFU is
not supported either since this channel is used to carrymessages
about format, rate and DFU state

· c_mix_ctl – Optional chanend to be connected to the mixer
core(s) if present

· c_clk_ctl – Optional chanend to be connected to the clockgen
core if present

· dfuInterface – Interface to DFU task (this task must be run
on a tile connected to boot flash.

92

lib_xua: USB Audio components library

void XUA_Buffer(
chanend c_aud_out,chanend c_aud_in,chanend c_aud_fb,chanend
c_midi_from_host,chanend c_midi_to_host,chanend
c_midi,NULLABLE_RESOURCE(chanend, c_int),NULLABLE_RESOURCE(chanend,
c_clk_int),chanend c_sof,chanend c_aud_ctl,NULLABLE_RESOURCE(in_port_t,
p_off_mclk),chanend c_hid,chanend c_aud,chanend
c_audio_rate_change,CLIENT_INTERFACE(pll_ref_if, i_pll_ref),chanend
c_swpll_update,

)
USB Audio Buffering Core(s).
This function buffers USB audio data between the XUD and the audio subsys-
tem. Most of the chanend parameters to the function should be connected to
XUD_Manager(). The uses two cores.

Parameters

· c_aud_out–AudioOUTendpoint channel connected to theXUD
· c_aud_in – Audio IN endpoint channel connected to the XUD
· c_aud_fb – Audio feedback endpoint channel connected to the

XUD
· c_midi_from_host – MIDI OUT endpoint channel connected

to the XUD
· c_midi_to_host –MIDI IN endpoint channel connected to the

XUD
· c_midi – Channel connected to MIDI thread
· c_int – Audio clocking interrupt endpoint channel connected to

the XUD
· c_clk_int – Optional chanend connected to the clockGen()

thread if present
· c_sof – Start of frame channel connected to the XUD
· c_aud_ctl – Audio control channel connected to Endpoint0()
· p_off_mclk – A port that is clocked of the MCLK input (not the

MCLK input itself)
· c_hid – Channel connected to the HID handler thread
· c_aud – Channel connected to XUA_AudioHub() thread
· c_audio_rate_change – Channel to notify and synchronise

on audio rate change
· i_pll_ref – Interface to task that toggles reference pin to

CS2100
· c_swpll_update – Channel connected to software PLL task.

Expects master clock counts based on USB frames.

void XUA_AudioHub(
NULLABLE_RESOURCE(chanend, c_aud),NULLABLE_RESOURCE(clock,
clk_audio_mclk),NULLABLE_RESOURCE(clock, clk_audio_bclk),NULLABLE_RESOURCE(in_port_t,
p_mclk_in),NULLABLE_RESOURCE(i2s_clk_port_type,
p_lrclk),NULLABLE_RESOURCE(i2s_clk_port_type, p_bclk),NULLABLE_ARRAY_OF_SIZE(out_buffered_port_32_t,
p_i2s_dac, I2S_WIRES_DAC),NULLABLE_ARRAY_OF_SIZE(in_buffered_port_32_t,
p_i2s_adc, I2S_WIRES_ADC),chanend c_spdif_tx,chanend c_dig,chanend
c_audio_rate_change,NULLABLE_SERVER_INTERFACE(i_dfu, dfuInter-
face),chanend c_pdm_in,

)
The audio driver thread.
This function drives I2S ports and handles samples to/from other digital I/O
threads.

Parameters

93

lib_xua: USB Audio components library

· c_aud – Audio sample channel connected to the mixer() thread
or the decouple() thread

· clk_audio_mclk – Nullable clockblock to be clocked from
master clock

· clk_audio_bclk – Nullable clockblock to be clocked from i2s
bit clock

· p_mclk_in – Master clock inport port (must be 1-bit). Use null
when xcore is slave

· p_lrclk – Nullable port for I2S sample clock
· p_bclk – Nullable port for I2S bit clock
· p_i2s_dac – Nullable array of ports for I2S data output lines
· p_i2s_adc – Nullable array of ports for I2S data input lines
· i_SoftPll – Interface to software PLL task
· c_spdif_tx – Channel connected to S/PDIF transmitter core

from lib_spdif
· c_dig – Channel connected to the clockGen() thread for receiv-

ing/transmitting samples
· c_audio_rate_change – Channel notifying ep_buffer of an

mclk frequency change and sync for stable clock
· dfuInterface – Interface supporting DFU methods
· c_pdm_in – Channel for receiving decimated PDM samples

void mixer(chanend c_to_host, chanend c_to_audio, chanend c_mix_ctl)
Digital sample mixer.
This thread mixes audio streams between the decouple() thread and the audio()
thread.

Parameters

· c_to_host – a chanend connected to the decouple() thread for
receiving/transmitting samples

· c_to_audio – a chanend connected to the audio() thread for
receiving/transmitting samples

· c_mix_ctl– a chanend connected to the Endpoint0() thread for
receiving control commands

void clockGen(
NULLABLE_RESOURCE(streaming_chanend_t, c_spdif_rx),NULLABLE_RESOURCE(streaming_chanend_t,
c_adat_rx),CLIENT_INTERFACE(pll_ref_if, i_pll_ref),chanend c_audio,chanend
c_clk_ctl,chanend c_clk_int,chanend c_audio_rate_change,

)
Clock generation and digital audio I/O handling.

Parameters

· c_spdif_rx – channel connected to S/PDIF receive thread
· c_adat_rx – channel connect to ADAT receive thread
· i_pll_ref – interface to taslk that outputs clock signal to drive

external frequency synthesizer
· c_audio – channel connected to the audio() thread
· c_clk_ctl – channel connected to Endpoint0() for configura-

tion of the clock
· c_clk_int – channel connected to the decouple() thread for

clock interrupts
· c_audio_rate_change – channel to notify of master clock

change
· p_for_mclk_count_aud – port used for counting mclk and

providing a timestamp

94

lib_xua: USB Audio components library

· c_sw_pll – channel used to communicate with software PLL
task

void usb_midi(
NULLABLE_RESOURCE(in_buffered_port_1_t, p_midi_in),NULLABLE_RESOURCE(port,
p_midi_out),NULLABLE_RESOURCE(clock, clk_midi),NULLABLE_RESOURCE(chanend,
c_midi),unsigned cable_number,

)
USB MIDI I/O task.
This function passes MIDI data between XUA_Buffer and MIDI UART I/O.

Parameters

· p_midi_in – 1-bit input port for MIDI
· p_midi_out – 1-bit output port for MIDI
· clk_midi – Clock block used for clockin the UART; should have

a rate of 100MHz
· c_midi – Chanend connected to the decouple() thread
· cable_number–The cable number of theMIDI implementation.

This should be set to 0.

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

95

	Overview
	Software architecture
	Basic Usage
	Library Structure
	Using in an application
	“Codeless” programming model
	Extending the “Codeless” application
	Configuring lib_xua
	User functions

	Options
	Strings and IDs
	Code Location
	Channel counts and sample rates
	USB Audio Class version
	Synchronisation
	I²S/TDM
	S/PDIF transmit
	S/PDIF receive
	ADAT transmit
	ADAT receive
	MIDI
	PDM microphones
	Mixer
	Direct Stream Digital (DSD)
	DFU
	Audio stream formats
	Other options

	Advanced usage
	Core hardware resources
	Running the core components
	I²S/TDM
	Mixer

	Additional features
	S/PDIF transmit
	S/PDIF receive
	ADAT transmit
	ADAT receive

	Implementation detail
	Audio Hub and I²S
	Endpoint 0: Management and control
	Audio endpoints (Endpoint Buffer and Decoupler)
	XMOS USB Device (XUD) library
	External clock recovery (Clock Gen)
	Digital mixer
	S/PDIF transmit
	S/PDIF receive
	MIDI
	PDM microphones
	Audio controls via Human Interface Device (HID)
	Device Firmware Upgrade (DFU) over USB
	Resource usage

	API reference
	Configuration defines
	User function definitions
	Component API

