
lib_mic_array: PDM microphone array library

Publication Date: 2024/10/30
Document Number: XM-010267-UG v5.5.0

lib_mic_array: PDM microphone array library

IN THIS DOCUMENT

1 Introduction . 2
2 Overview . 2

2.1 Capabilities . 3
2.2 High-Level Process View . 4

3 Getting Started . 6
3.1 Identify Resources . 6
3.2 Vanilla Model . 8
3.3 Prefab Model . 9

4 Decimator Stages . 11
4.1 Decimator Stage 1 . 11
4.2 Decimator Stage 2 . 12
4.3 Custom Filters . 14

5 Sample Filters . 17
5.1 DC Offset Elimination . 17

6 Software Structure . 19
6.1 High-Level View . 19
6.2 Sub-Components . 22

7 Mic Array Resource Usage . 24
7.1 Discrete Resources . 24
7.2 Compute . 25
7.3 Memory . 26

8 Vanilla API . 27
8.1 How It Works . 27
8.2 Configuration . 28

9 API Reference . 30
9.1 C++ API Reference . 30
9.2 C API Reference . 53

1 Introduction

lib_mic_array is a library for interfacing with one or more PDM microphones on an
XMOS device.

Version 5.0 of this library has been redesigned from scratch to make efficient usage of
the XMOS XS3 architecture.

See Getting Started to get going.

Note: Version 5.0 does not currently support XS2 or XS1 devices. Please use version
4.5.0 if you need support for these devices: https://github.com/xmos/lib_mic_array/
releases/tag/v4.5.0

Find the latest version of lib_mic_array on GitHub.

2 Overview

lib_mic_array is a library for capturing and processing PDM microphone data on
xcore.ai devices.

PDM microphones are a kind of ‘digital microphone’ which captures audio data as a
stream of 1-bit samples at a very high sample rate. The high sample rate PDM stream is
captured by the device, filtered and decimated to a 32-bit PCM audio stream.

2

https://github.com/xmos/lib_mic_array/releases/tag/v4.5.0
https://github.com/xmos/lib_mic_array/releases/tag/v4.5.0
https://github.com/xmos/lib_mic_array

lib_mic_array: PDM microphone array library

2.1 Capabilities

· Both SDR (1 mic per pin) and DDR (2 mics per pin) microphone configurations are
supported

· Configurable clock divider allows user-selectable PDM sample clock frequency (3.072
MHz typical)

· Configurable two-stage decimating FIR filter
· First stage has fixed tap count of 256 and decimation factor of 32
· Second stage has fully configurable tap count and decimation factor
· Custom filter coefficients can be used for either stage
· Reference filter with total decimation factor of 192 is provided (16 kHz output sam-

ple rate w/ 3.072 MHz PDM clock).
· Filter generation scripts and examples are included to support 32 kHz and 48 kHz.

· Supports 1-, 4- and 8-bit ports.

· Supports 1 to 16 microphones
· Includes ability to capture samples on a subset of a port’s pins (e.g. 3 PDM micro-

phones may be used with a 4- or 8-bit port)
· Also supports microphone channel index remapping

· Optional DC offset elimination filter

· Sample framing with user selectable frame size (down to single samples)

· Most configurations require only a single hardware thread

3

lib_mic_array: PDM microphone array library

2.2 High-Level Process View

This section gives a brief overview of the steps to process a PDM audio stream into a
PCM audio stream. This section is concerned with the steady state behavior and does
not describe any necessary initialization steps. The high level process view is depicted
in the figure Mic Array High Level Process.

Fig. 1: Mic Array High Level Process

Execution Contexts

The mic array unit uses two different execution contexts. The first is the PDM rx service
(“PDM rx”), which is responsible for reading PDMsamples from the physical port, and has
relatively little work to do, but also has a strict real-time constraint on reading port data
in a timely manner. The second is the decimation thread, which is where all processing
other than PDM capture is performed.

This two-context model relaxes the need for tight coupling and synchronization between
PDM rx and the decimation thread, allowing significant flexibility in how samples are
processed in the decimation thread.

PDM rx is typically run within an interrupt on the same hardware core as the decimation
thread, but it can also be run as a separate thread in cases where many channels result
in a high processing load.

Likewise, the decimators may be split into multiple parallel hardware threads in the case
where the processing load exceeds the MIPS available in a single thread.

Step 1: PDM Capture

The PDM data signal is captured by the xcore.ai device’s port hardware. The port receiv-
ing the PDM signals buffers the received samples. Each time the port buffer is filled,
PDM rx reads the received samples.

4

lib_mic_array: PDM microphone array library

Samples are collected word-by-word and assembled into blocks. Each time a block has
been filled, the block is transferred to the decimation threadwhere all remainingmic array
processing takes place.

The size of PDM data blocks varies depending upon the configured number of micro-
phone channels and the configured second stage decimator’s decimation factor. Each
PDM data block will contain exactly enough PDM samples to produce one newmic array
(multi-channel) output sample.

Step 2: First Stage Decimation

The conversion from the high-sample-rate PDM stream to lower-sample-rate PCM
stream involves two stages of decimating filters. After the decimation thread receives a
block of PDM samples, the samples are filtered by the first stage decimator.

The first stage decimator has a fixed decimation factor of 32 and a fixed tap count of
256. An application is free to supply its ownfilter coefficients for the first stage decimator
(using the fixed decimation factor and tap count), however this library also provides a
reference filter for the first stage decimator that is recommended for most applications.

The first stage decimating filter is an FIR filter with 16-bit coefficients, and where each
input sample corresponds to a+1 or a-1 (typical for PDMsignals). The output of the first
stage decimator is a block of 32-bit PCM samples with a sample time 32 times longer
than the PDM sample time.

See Decimator Stages for further details.

Step 3: Second Stage Decimation

The second stage decimator is a decimating FIR filter with a configurable decimation
factor and tap count. Like the first stage decimator, this library provides a reference filter
suitable for the second stage decimator. The supplied filter has a tap count of 65 and a
decimation factor of 6.

The output of the first stage decimator is a block of N*K PCM values, where N is the
number ofmicrophones and K is the second stage decimation factor. This is just enough
samples to produce one output sample from the second stage decimator.

The resulting sample is vector-valued (one element per channel) and has a sample time
corresponding to 32*K PDM clock periods. Using the reference filters and a 3.072 MHz
PDM clock, the output sample rate is 16 kHz.

See Decimator Stages for further details.

Step 4: Post-Processing

After second stage decimation, the resulting sample goes to post-processing where two
(optional) post-processing steps are available.

The first is a simple IIR filter, called DC Offset Elimination, which seeks to ensure each
output channel tends to approach zero mean. DC Offset Elimination can be disabled if
not desired. See Sample Filters for further details.

The second post-processing step is framing, where instead of signaling each sample
of audio to subsequent processing stages one at a time, samples can be aggregated
and transferred to subsequent processing stages as non-overlapping blocks. The size
of each frame is configurable (down to 1 sample per frame, where framing is functionally
disabled).

5

lib_mic_array: PDM microphone array library

Finally, the sample or frame is transmitted over a channel from the mic array module to
the next stage of the processing pipeline.

Extending/Modifying Mic Array Behavior

At the core of lib_mic_array are several C++ class templates which are loosely cou-
pled and intended to be easily overridden for modified behavior. The mic array unit itself
is an object made by the composition of several smaller components which perform
well-defined roles.

For example, modifying the mic array unit to use somemechanism other than a channel
to move the audio frames out of the mic array is a matter of defining a small new class
encapsulating just the modified transfer behavior, and then instantiating the mic array
class template with the new class as the appropriate template parameter.

With that in mind, while most applications will have no need to modify the mic array
behavior, it is nevertheless designed to be easy to do so.

3 Getting Started

There are three models for how the mic array unit can be included in an application. The
details of how to allocate, initialize and start the mic array will depend on the chosen
model.

In order of increasing complexity, these are:

· Vanilla Model - The simplest way to include the mic array. It is usually sufficient but
offers comparatively little flexibility with respect to configuration and run-time control.
Using this model (mostly) means modifying an application’s build scripts.

· Prefab Model - This model involves a little more effort from the application developer,
including writing a couple C++ wrapper functions, but gives the application access to
any of the defined prefab mic array components.

· General Model - Any other case. This is necessary if an application wishes to use a
customized mic array component.

The vanilla and prefab models for integrating the mic array into your application will be
discussed inmore detail below. The generalmodelmay involve customizing or extending
the classes in lib_mic_array and is beyond the scope of this introduction.

Whichever model is chosen, the first step to integrate a mic array unit into an application
is to identify the required hardware resources.

3.1 Identify Resources

The key hardware resources to be identified are the ports and clock blocks that will be
used by themic array unit. The ports correspond to the physical pins onwhich clocks and
sample data will be signaled. Clock blocks are a type of hardware resource which can be
attached to ports to coordinate the presentation and capture of signals on physical pins.

Clock Blocks

While clock blocksmay bemore abstract than ports, their implications for this library are
actually simpler. First, the mic array unit will need a way of taking the audio master clock
and dividing it to produce a PDM sample clock. This can be accomplished with a clock
block. This will be the clock block which the API documentation refers to as “Clock A”.

6

lib_mic_array: PDM microphone array library

Second, if (and only if) the PDM microphones are being used in a Dual Data Rate (DDR)
configuration a second clock block will be required. In a DDR configuration 2 micro-
phones share a physical pin for output sample data, where one signals on the rising
edge of the PDM clock and the other signals on the falling edge. The second clock block
required in a DDR configuration is referred to as “Clock B” in the API documentation.

Each tile on an xcore.ai device has 5 clock blocks available. In code, a clock block is iden-
tified by its resource ID, which are given as the preprocessor macros XS1_CLKBLK_1
through XS1_CLKBLK_5.

Unlike ports, which are tied to specific physical pins, clock blocks are fungible. Your
application is free to use any clock block that has not already been allocated for an-
other purpose. The vanilla component model defaults to using XS1_CLKBLK_1 and
XS1_CLKBLK_2.

Ports

Three ports are needed for the mic array component. As mentioned above, ports are
physically tied to specific device pins, and so the correct ports must be identified for
correct behavior.

Note that while ports are physically tied to specific pins, this is not a 1-to-1mapping. Each
port has a port width (measured in bits) which is the number of pins which comprise the
port. Further, the pin mappings for different ports overlap, with a single pin potentially
belonging to multiple ports. When identifying the needed ports, take care that both the
pin map (see the documentation for your xcore.ai package) and port width are correct.

The first port needed is a 1-bit port on which the audio master clock is received. In the
documentation, this is usually referred to as p_mclk.

The second port needed is a 1-bit port on which the PDM clock will be signaled to the
PDMmics. This port is referred to as p_pdm_clk.

The third port is that on which the PDM data is received. In an SDR configuration, the
width of this port must be greater than or equal to the number of microphones. In a
DDR configuration, twice this port width must be greater than or equal to the number of
microphones. This port is referred to as p_pdm_mics.

XCore applications are typically compiled with an “XN” file (with a “.xn” file extension). An
XNfile is an XMLdocumentwhich describes some information about the device package
as well as some other helpful board-related information. The identification of your ports
may have already been done for you in your XN file. Following is a snippet from an XN
file with mappings for the three ports described above:
...
<Tile Number="1" Reference="tile[1]">

<!-- MIC related ports -->
<Port Location="XS1_PORT_1G" Name="PORT_PDM_CLK"/>
<Port Location="XS1_PORT_1F" Name="PORT_PDM_DATA"/>
<!-- Audio ports -->
<Port Location="XS1_PORT_1D" Name="PORT_MCLK_IN_OUT"/>
<Port Location="XS1_PORT_1C" Name="PORT_I2S_BCLK"/>
<Port Location="XS1_PORT_1B" Name="PORT_I2S_LRCLK"/>
<!-- Used for looping back clocks -->
<Port Location="XS1_PORT_1N" Name="PORT_NOT_IN_PACKAGE_1"/>

</Tile>
...

The first 3 ports listed, PORT_PDM_CLK, PORT_PDM_DATA and PORT_MCLK_IN_OUT
are respectively p_pdm_clk, p_pdm_mics and p_mclk. The value in the Location
attribute (e.g. XS1_PORT_1G) is the port name as you will find it in your package docu-
mentation.

7

lib_mic_array: PDM microphone array library

In this case, either PORT_PDM_CLK or XS1_PORT_1G can be used in code to identify this
port.

Declaring Resources

Once the ports and clock blocks to be used have been identified, these resources can
be represented in code using a pdm_rx_resources_t struct. The following is an
example of declaring resources in a DDR configuration. See pdm_rx_resources_t,
PDM_RX_RESOURCES_SDR() and PDM_RX_RESOURCES_DDR() for more details.
pdm_rx_resources_t pdm_res = PDM_RX_RESOURCES_DDR(

PORT_MCLK_IN_OUT,
PORT_PDM_CLK,
PORT_PDM_DATA,
XS1_CLKBLK_1,
XS1_CLKBLK_2);

Note that this is not necessary in applications using the vanilla model.

Other Resources

In addition to ports and clock blocks, there are also several other hardware resource types
used by lib_mic_arraywhich are worth considering. Running out of any of these will
preclude the mic array from running correctly (if at all)

· Threads - At least one hardware thread is required to run the mic array component.

· Compute - The mic array unit will require a fixed number of MIPS (millions of instruc-
tions per second) to perform the required processing. The exact requirement will de-
pend on the configuration used.

· Memory - Themic array requires amodest amount ofmemory for code and data. (see
Mic Array Resource Usage).

· Chanends - At least 4 chanends must be available for signaling between threads/sub-
components.

3.2 Vanilla Model

Mic array configuration with the vanilla model is achieved mostly through the applica-
tion’s build system configuration.

In the /etc/vanilla directory of the lib_mic_array repository are a source and
header file which are not compiled with (or on the include path) of the library. Configuring
the mic array using the vanilla model means adding those files to your application’s build
(not the library target), and defining several compile options which tell it how to behave.

Vanilla - CMake Macro

To simplify this further, a CMake macro called mic_array_vanilla_add() has been
included with the build system.

mic_array_vanilla_add() takes several arguments:

· TARGET_NAME - The name of the CMake application target that the vanilla mode
source should be added to.

· MCLK_FREQ - The frequency of the master audio clock, in Hz.

· PDM_FREQ - The desired frequency of the PDM clock, in Hz.

· MIC_COUNT - The number of microphone channels to be captured.

8

lib_mic_array: PDM microphone array library

· SAMPLES_PER_FRAME - The size of the audio frames produced by the mic
array unit (frames will be 2 dimensional arrays with shape (MIC_COUNT,
SAMPLES_PER_FRAME)).

Vanilla - Optional Configuration

Though not exposed by the mic_array_vanilla_add() macro, several additional
configuration options are available when using the vanilla model. These are all config-
ured by adding defines to the application target.

Vanilla - Initializing and Starting

Once the configuration options have been chosen, initializing and starting the mic ar-
ray at run-time is easily achieved. Two function calls are necessary, both are included
through mic_array_vanilla.h (which was added to your include path through your
build configuration).

First, during application initialization, the function ma_vanilla_init(), which takes
no arguments, must be called. This will configure the hardware resources and install the
PDM rx service as an ISR, but will not actually start any threads or PDM capture.

Once any remaining application initialization is complete, PDM capture and process-
ing is started by calling ma_vanilla_task(). ma_vanilla_task() is a blocking
call which takes a single argument which is the chanend that will be used to trans-
mit audio frames to subsequent stages of the processing pipeline. Usually the call to
ma_vanilla_task() will be placed directly in a par {...} block along with other
threads to be started on the tile.

Note: Both ma_vanilla_init() and ma_vanilla_task() must be called from
the core which will host the decimation thread.

3.3 Prefab Model

The lib_mic_array library has a C++ namespace mic_array::prefab which con-
tains class templates for typical mic array setups using common sub-components. The
templates in the mic_array::prefab namespace hide most of the complexity (and
unneeded flexibility) from the application author, so they can focus only on pieces they
care about.

Note: As of version 5.0.1, only one prefab class template, BasicMicArray, has been
defined.

To configure themic array using a prefab, youwill need to add aC++ source file to your ap-
plication. NB: This will end up looking a lot like the contents of mic_array_vanilla.
cpp when you are through.

Prefab - Declare Resources

The example in this section will use 2microphones in a DDR configuration with DC offset
elimination enabled, and using 128-sample frames. The resource IDs used may differ
than those required for your application.

pdm_res will be used to identify the ports and clocks which will be configured for PDM
capture.

9

lib_mic_array: PDM microphone array library

Within a C++ source file:
#include "mic_array/mic_array.h"
...
#define MIC_COUNT 2 // 2 mics
#define DCOE_ENABLE true // DCOE on
#define FRAME_SIZE 128 // 128 samples per frame
...
pdm_rx_resources_t pdm_res = PDM_RX_RESOURCES_DDR(

PORT_MCLK_IN_OUT,
PORT_PDM_CLK,
PORT_PDM_DATA,
MIC_ARRAY_CLK1,
MIC_ARRAY_CLK2);

...

Prefab - Allocate MicArray

The C++ class template MicArray is central to the mic array unit in this library. The
class templates defined in the mic_array::prefab namespace each derive from
mic_array::MicArray.

Define and allocate the specific implementation of MicArray to be used.
...
// Using the full name of the class could become cumbersome. Using an alias.
using TMicArray = mic_array::prefab::BasicMicArray<

MIC_COUNT, FRAME_SIZE, DCOE_ENABLED>
// Allocate mic array
TMicArray mics = TMicArray();
...

Now the mic array unit has been defined and allocated. The template parameters sup-
plied (e.g. MIC_COUNT and FRAME_SIZE) are used to calculate the size of any data
buffers required by the mic array, and so the mics object is self-contained, with all re-
quired buffers being statically allocated. Additionally, class templates will ultimately al-
low unused features to be optimized out at build time. For example, if DCOE is disabled, it
will be optimized out at build time so that at run time it won’t even need to check whether
DCOE is enabled.

Prefab - Init and Start Functions

Now a couple functions need to be implemented in your C++ file. In most cases these
functions will need to be callable from C or XC, and so they should not be static, and they
should be decorated with extern "C" (or the MA_C_API preprocessor macro provided
by the library).

First, a function which initializes the MicArray object and configures the port and clock
block resources. The documentation for BasicMicArray indicates any parts of the
MicArray object that need to be initialized.
#define MCLK_FREQ 24576000
#define PDM_FREQ 3072000
...
MA_C_API
void app_init() {

// Configure clocks and ports
const unsigned mclk_div = mic_array_mclk_divider(MCLK_FREQ, PDM_FREQ);
mic_array_resources_configure(&pdm_res, mclk_div);

// Initialize the PDM rx service
mics.PdmRx.Init(pdm_res.p_pdm_mics);

}
...

app_init() can be called from an XC main() during initialization.

Assuming the PDM rx service is to be run as an ISR, a second function is used to actually
start themic array unit. This starts the PDM clock, install the ISR and enter the decimator
thread’s main loop.

10

lib_mic_array: PDM microphone array library

MA_C_API
void app_mic_array_task(chanend_t c_audio_frames) {
mics.SetOutputChannel(c_audio_frames);

// Start the PDM clock
mic_array_pdm_clock_start(&pdm_res);

mics.InstallPdmRxISR();
mics.UnmaskPdmRxISR();

mics.ThreadEntry();
}

Now a call to app_mic_array_task() with the channel to send frames on can be
placed inside a par {...} block to spawn the thread.

4 Decimator Stages

The mic array unit provided by this library uses a two-stage decimation process to con-
vert a high sample rate stream of (1-bit) PDM samples into a lower sample rate stream
of (32-bit) PCM samples.

Below is a Simplified Decimator Model.

Fig. 2: Simplified Decimator Model

The first stage filter is a decimating FIR filter with a fixed tap count (S1_TAP_COUNT) of
256 and a fixed decimation factor (S1_DEC_FACTOR) of 32.

The second stage decimator is a fully configurable FIR filter with tap count
S2_TAP_COUNT and a decimation factor of S2_DEC_FACTOR (this can be 1).

4.1 Decimator Stage 1

For the first stage decimating FIR filter, the actual filter coefficients used are configurable,
so an application is free to use a custom first stage filter, as long as the tap count is 256.
This library also provides coefficients for the first stage filter, whose filter characteristics
are adequate for most applications.

Filter Implementation (Stage 1)

The input to the first stage decimator (here called “Stream A”) is a stream of 1-bit PDM
samples with a sample rate of PDM_FREQ. Rather than each PDM sample representing
a value of 0 or 1, each PDM sample represents a value of either +1 or -1. Specifically,
on-chip and in-memory, a bit value of 0 represents +1 and a bit value of 1 represents -1.

The output from the first stage decimator, Stream B, is a stream of 32-bit PCM samples
with a sample rate of PDM_FREQ/S1_DEC_FACTOR = PDM_FREQ/32. For example, if
PDM_FREQ is 3.072 MHz, then Stream B’s sample rate is 96.0 kHz.

11

lib_mic_array: PDM microphone array library

The first stage filter is structured tomake optimal use of the XCore XS3 vector processing
unit (VPU), which can compute the dot product of a pair of 256-element 1-bit vectors in
a single cycle. The first stage uses 256 16-bit coefficients for its filter taps.

The signature of the filter function is
int32_t fir_1x16_bit(uint32_t signal[8], uint32_t coeff_1[]);

Each time 32 PDM samples (1 word) become available for an audio channel, those sam-
ples are shifted into the 8-word (256-bit) filter state, and a call to fir_1x16_bit results
in 1 Stream B sample element for that channel.

The actual implementation for the first stage filter can be found in src/
fir_1x16_bit.S. Additional usage details can be found in api/etc/
fir_1x16_bit.h.

Note that the 256 16-bit filter coefficients are not stored in memory as a standard coef-
ficient array (i.e. int16_t filter[256] = {b[0], b[1], ... };). Rather, in
order to take advantage of the VPU, the coefficients must be rearranged bit-by-bit into
a block form suitable for VPU processing. See the section below on filter conversion if
supplying a custom filter for stage 1.

Provided Filter (Stage 1)

This library provides filter coefficients that may be used with the first stage decimator.
These coefficients are available in your application through the header mic_array/
etc/filters_default.h as stage1_coef.

Filter Characteristics (Stage 1) The plot below indicates the frequency response of the
provided first stage decimation filter First stage decimation filter freq response.

Filter Conversion Script

Taking a set of floating-point coefficients, quantizing them into 16-bit coefficients and
‘boggling’ them into the correct memory layout can be a tricky business. To simplify this
process, this library provides a Python (3) script which does this process for you.

The script can be found in this repository at python/stage1.py.

4.2 Decimator Stage 2

An application is free to supply its own second stage filter. This library also provides a
second stage filter whose characteristics are adequate for many or most applications.

Filter Implementation (Stage 2)

The input to the second stage decimator (here called “Stream B”) is the stream of 32-bit
PCM samples emitted from the first stage decimator with a sample rate of PDM_FREQ/
32.

The output from the second stage decimator, Stream C, is a stream of 32-bit PCM
samples with a sample rate of PDM_FREQ/(32*S2_DEC_FACTOR). For example, if
PDM_FREQ is 3.072 MHz, and S2_DEC_FACTOR is 6, then Stream C’s sample rate (the
sample rate received by the main application code) is

3.072 MHz / (32*6) = 16 kHz

12

lib_mic_array: PDM microphone array library

Fig. 3: First stage decimation filter freq response

The second stage filter uses the 32-bit FIR filter implementation from lib_xcore_math.
See xs3_filter_fir_s32() in that library for more implementation details.

Provided Filter (Stage 2)

This library provides a filter suitable for the second stage decimator. It is available in your
application through the header mic_array/etc/filters_default.h.

For the provided filter S2_TAP_COUNT = 65, and S2_DEC_FACTOR = 6.

Filter Characteristics (Stage 2) The plot below indicates the frequency response of the
provided second stage decimation filter Second stage decimation filter freq response.

13

https://github.com/xmos/lib_xcore_math

lib_mic_array: PDM microphone array library

Fig. 4: Second stage decimation filter freq response

4.3 Custom Filters

Without writing a custom decimator implementation, the tap count and decimation fac-
tor for the first stage decimator are fixed to 256 and 32 respectively. These can be mod-
ified for the second stage, and the filter coefficients for both stages can be modified.

When using the C++ API to construct your application’s mic array component, the dec-
imator’s metaparameters (tap count, decimation factor) are given as C++ template pa-
rameters for the decimator class template. Pointers to the coefficients are provided to
the decimator when it is initialized.

To keep things simple, when using the vanilla API or when constructing the mic array
component using BasicMicArray, it is assumed that the filter parameters will be those
from stage1_fir_coef.c, stage2_fir_coef.c and filters_default.h. In

14

lib_mic_array: PDM microphone array library

this case it is recommended to simple change those files directly with the updated coef-
ficients. Otherwise you may need to use the C++ API directly.

Note that both the first and second stage filters are implemented using fixed-point arith-
metic which requires the coefficients to be presented in a particular format. The Python
scripts stage1.py and stage2.py, provided with this library, can be used to help with this
formatting. See the associated README for usage details.

Configuring for 32 kHz or 48 kHz output

Filter design scripts are provided to support higher output sampling rates than the default
16 kHz.

Both stage 1 and stage 2 need to be updated because the first stage needs a higher cut
off frequency before samples are passed to the downsample by three (32 kHz) or two
(48 kHz) second stage decimator.

From the command line, follow these instructions:
python filter_design/design_filter.py # generate the filter .pkl files
python stage1.py good_32k_filter_int.pkl # convert the .pkl file to a C style array for stage 1
python stage2.py good_32k_filter_int.pkl # convert the .pkl file to a C style array for stage 2

Note: Use good_48k_filter_int.pkl instead of good_32k_filter_int.pkl to support 48 kHz.

Next copy the output from last two scripts into a source file. This could be your
mic_array.cpp file which launches the mic array tasks. It may look something like this:
#define MIC_ARRAY_32K_STAGE_1_TAP_COUNT 148
#define MIC_ARRAY_32K_STAGE_1_FILTER_WORD_COUNT 128
static const uint32_t WORD_ALIGNED stage1_32k_coefs[MIC_ARRAY_32K_STAGE_1_FILTER_WORD_COUNT]
{

.... the coeffs
};

#define MIC_ARRAY_32K_STAGE_2_TAP_COUNT 96
static constexpr right_shift_t stage2_32k_shift = 3;

static const int32_t WORD_ALIGNED stage2_32k_coefs[MIC_ARRAY_32K_STAGE_2_TAP_COUNT] = {
.... the coeffs

};

The new decimation object must now be declared that references your new filter coeffi-
cients. Again, this example is for 32 kHz output since the decimation factor is 3.:
using TMicArray = mic_array::MicArray<mic_count,

mic_array::TwoStageDecimator<mic_count,
3,
MIC_ARRAY_32K_STAGE_2_TAP_COUNT>,

mic_array::StandardPdmRxService<MIC_ARRAY_CONFIG_MIC_IN_COUNT,
mic_count,
3>,

typename std::conditional<MIC_ARRAY_CONFIG_USE_DC_ELIMINATION,
mic_array::DcoeSampleFilter<mic_count>,
mic_array::NopSampleFilter<mic_count>>::type,

mic_array::FrameOutputHandler<mic_count,
MIC_ARRAY_CONFIG_SAMPLES_PER_FRAME,
mic_array::ChannelFrameTransmitter>>;

Next you need to change how you initialise and run the mic array task to reference your
new mic array custom object. Normally the following code would be used in ma_init():
mics.Init();
mics.SetPort(pdm_res.p_pdm_mics);
mic_array_resources_configure(&pdm_res, MIC_ARRAY_CONFIG_MCLK_DIVIDER);
mic_array_pdm_clock_start(&pdm_res);

however if you wish to use custom filters then the initialisation would look like this:

15

lib_mic_array: PDM microphone array library

mics.Decimator.Init(stage1_32k_coefs, stage2_32k_coefs, stage2_32k_shift);
mics.PdmRx.Init(pdm_res.p_pdm_mics);
mic_array_resources_configure(&pdm_res, MIC_ARRAY_CONFIG_MCLK_DIVIDER);
mic_array_pdm_clock_start(&pdm_res);

Finally, the ma_task() function needs to be changed from the default way of calling:
mics.SetOutputChannel(c_frames_out);
mics.InstallPdmRxISR();
mics.UnmaskPdmRxISR();
mics.ThreadEntry();

to using the custom version of the object:
mics.OutputHandler.FrameTx.SetChannel(c_frames_out);
mics.PdmRx.InstallISR();
mics.PdmRx.UnmaskISR();
mics.ThreadEntry();

The increased sample rate will place a higher MIPS burden on the processor. The typical
MIPS usage (see sectionMic Array Resource Usage) is in the order of 11MIPS per channel
using a 16 kHz output decimator.

Increasing the output sample rate to 32 kHz using the same length filters will increase
processor usage per channel to approximately 13 MIPS rising to 15.6 MIPS for 48 kHz.

Increasing the filer lengths to 148 and 96 for stages 1 and 2 respectively at 48 kHz will
increase processor usage per channel to around 20 MIPS.

Filter Characteristics for good_32k_filter_int.pkl The plot below indicates the fre-
quency response of the first and second stages of the provided 32 kHz filters as well
as the cascaded overall response. Note that the overall combined response provides a
nice flat passband as shown in the good_32k_filter_int.pkl frequency response.

Fig. 5: good_32k_filter_int.pkl frequency response

16

lib_mic_array: PDM microphone array library

Filter Characteristics for good_48k_filter_int.pkl The plot below indicates the fre-
quency response of the first and second stages of the provided 48 kHz filters as well
as the cascaded overall response. Note that the overall combined response provides a
nice flat passband as shown good_48k_filter_int.pkl frequency response.

Fig. 6: good_48k_filter_int.pkl frequency response

5 Sample Filters

Following the two-stage decimation procedure is an optional post-processing stage
called the sample filter. This stage operates on each sample emitted by the second stage
decimator, one at a time, before the samples are handed off for framing or transfer to
the rest of the application’s audio pipeline.

Note: This is represented by the SampleFilter sub-component of the MicArray
class template.

An application may implement its own sample filter in the form of a C++ class which
implements the Filter() function as required by MicArray. See the implementation
of DcoeSampleFilter for a simple example.

5.1 DC Offset Elimination

The current version of this library provides a simple IIR filter called DC Offset Elimination
(DCOE) that can be used as the sample filter. This is a high-pass filter meant to ensure
that each audio channel will tend towards a mean sample value of zero.

17

lib_mic_array: PDM microphone array library

Enabling/Disabling DCOE

Whether the DCOE filter is enabled by default and how to enable or disable it depends on
which approach your project uses to include the mic array component in the application.

Vanilla Model If your project uses the vanilla model (see Vanilla API) to include the
mic array unit in your application, then DCOE is enabled by default. To disable DCOE
your build script must add a compiler option to your application target that sets the
MIC_ARRAY_CONFIG_USE_DC_ELIMINATION preprocessor macro to the value 0.

For example, in a typical application’s CMakeLists.txt, that may look like the follow-
ing.
Gather sources and create application target
...
Add vanilla source to application build
mic_array_vanilla_add(my_app ${MCLK_FREQ} ${PDM_FREQ}

${MIC_COUNT} ${FRAME_SIZE})
...
Disable DCOE
target_compile_definitions(my_app

PRIVATE MIC_ARRAY_CONFIG_USE_DC_ELIMINATION=0)

Prefab Model If your project instantiates the BasicMicArray class template to in-
clude the mic array unit, DC offset elimination is enabled or disabled with the USE_DCOE
boolean template parameter (there is no default).
template <unsigned MIC_COUNT, unsigned FRAME_SIZE, bool USE_DCOE>

class BasicMicArray : public ...

The sample filter chosen is based on the USE_DCOE template parameter when the
class template gets instantiated. If true, DcoeSampleFilter will be selected as
the MicArray SampleFilter sub-component. Otherwise NopSampleFilterwill be
used.

Note: NopSampleFilter is a no-op filter – it does not modify the samples given to it
and ultimately will be completely optimized out at compile time.

For example, in your application source:
#include "mic_array/mic_array.h"
...
// Controls whether DCOE is enabled
static constexpr bool enable_dcoe = true;
auto mics = mic_array::prefab::BasicMicArray<MICS, FRAME_SIZE, enable_dcoe>();
...

GeneralModel If your project does not use either the vanilla or prefabmodels to include
the mic array unit in your application, then precisely how the DCOE filter is included may
depend on the specifics of your application. In general, however, the DCOE filter will be
enabled by using DcoeSampleFilter as the TSampleFilter template parameter for
the MicArray class template.

For example, sub-classingmic_array::MicArray as followswill enable DCOE for any
MicArray implementation deriving from that sub-class.
#include "mic_array/cpp/MicArray.hpp"
using namespace mic_array;
...
template <unsigned MIC_COUNT, class TDecimator,

class TPdmRx, class TOutputHandler>
class DcoeEnabledMicArray : public MicArray<MIC_COUNT, TDecimator, TPdmRx,

DcoeSampleFilter, TOutputHandler>
{
...

};

18

lib_mic_array: PDM microphone array library

DCOE Filter Equation

As mentioned above, the DCOE filter is a simple IIR filter given by the following equation,
where x[t] and x[t-1] are the current and previous input sample values respectively,
and y[t] and y[t-1] are the current and previous output sample values respectively.
R = 252.0 / 256.0
y[t] = R * y[t-1] + x[t] - x[t-1]

DCOE Filter Frequency Response

The plot below indicates the frequency response of DCOE filter DCOE filter frequency
response.

Fig. 7: DCOE filter frequency response

6 Software Structure

The core of lib_mic_array are a set of C++ class templates representing the mic
array unit and its sub-components.

The template parameters of these class templates are (mainly) used for two different
purposes. Non-type template parameters are used to specify certain quantitative con-
figuration values, such as the number of microphone channels or the second stage dec-
imator tap count. Type template parameters, on the other hand, are used for configuring
the behavior of sub-components.

6.1 High-Level View

At the heart of the mic array API is the MicArray class template.

19

lib_mic_array: PDM microphone array library

Note: All classes and class templates mentioned are in the mic_array C++ names-
pace unless otherwise specified. Additionally, this documentation may refer to class
templates (e.g. MicArray) with unbound template parameters as “classes” when doing
so is unlikely to lead to confusion.

The MicArray class template looks like the following:
template <unsigned MIC_COUNT,

class TDecimator,
class TPdmRx,
class TSampleFilter,
class TOutputHandler>

class MicArray;

Here the non-type template parameter MIC_COUNT indicates the number of microphone
channels to be captured and processed by themic array unit. Most of the class templates
have this as a parameter.

A MicArray object comprises 4 sub-components:

Member Field Component
Class

Responsibility

PdmRx TPdmRx Capturing PDM data from a port.
Decimator TDecimator 2-stage decimation on blocks of PDM data.
SampleFilter TSampleFilter Post-processing of decimated samples.
OutputHandler TOutputHandlerTransferring audio data to subsequent pipeline

stages.

Each of the MicArray sub-components has a type that is specified as a template pa-
rameter when the class template is instantiated. MicArray requires the class of each
of its sub-components to implement a certain minimal interface. The MicArray object
interacts with its sub-components using this interface.

Note: Abstract classes are not used to enforce this interface contract. Instead, the
contract is enforced (at compile time) solely in how the MicArray object makes use of
the sub-component.

The following diagram Mic Array High Level Process conceptually captures the flow of
information through the MicArray sub-components.

Note: MicArray does not enforce the use of an XCore port for collecting PDM samples
or an XCore channel for transferring processed data. This is just the typical usage.

Mic Array / Decimator Thread

Aside from aggregating its sub-components into a single logical entity, the MicArray
class template also holds the high-level logic for capturing, processing and coordinating
movement of the audio stream data.

The following code snippet is the implementation for the main mic array thread (or “dec-
imation thread”; not to be confused with (optional) PDM capture thread).

20

lib_mic_array: PDM microphone array library

Fig. 8: Mic Array High Level Process

void mic_array::MicArray<MIC_COUNT,TDecimator,TPdmRx,
TSampleFilter,
TOutputHandler>::ThreadEntry()

{
int32_t sample_out[MIC_COUNT] = {0};

while(1){
uint32_t* pdm_samples = PdmRx.GetPdmBlock();
Decimator.ProcessBlock(sample_out, pdm_samples);
SampleFilter.Filter(sample_out);
OutputHandler.OutputSample(sample_out);

}
}

The thread loops forever, and on each iteration

· Requests a block of PDM sample data from the PDM rx service. This is a blocking call
which only returns once a complete block becomes available.

· Passes the block of PDM sample data to the decimator to produce a single output
sample.

· Applies a post-processing filter to the sample data.

· Passes the processed sample to the output handler to be transferred to the next stage
of the processing pipeline. This may also be a blocking call, only returning once the
data has been transferred.

Note that the MicArray object doesn’t care how these steps are actually implemented.
For example, one output handler implementationmay send samples one at a time over a
channel. Another output handler implementation may collect samples into frames, and
use a FreeRTOS queue to transfer the data to another thread.

Curiously Recurring Template Pattern

The C++ API of this library makes heavy use of the Curiously Recurring Template Pattern
(CRTP).

21

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

lib_mic_array: PDM microphone array library

Instead of providing flexibility through abstract classes or polymorphism, CRTP achieves
flexibility through the use of class templates with type template parameters. As with de-
rived classes and virtual methods, the CRTP template parameter must follow a contract
with the class template where it implements one or more methods with specific names
and signatures that the class template directly calls.

There are a couple notable advantages of using CRTP over polymorphic behavior. With
CRTP flexibility does not generally come with the same run-time costs (in terms of both
compute and memory) as polymorphic solutions. This is because the CRTP class tem-
plate always knows the concrete type of any objects it uses at compile time. This avoids
the need for run time type information or virtual function tables. This allows compile
time optimizations can be made which may not be otherwise available. This in-turn al-
lows many function calls to be inlined, or in some cases, entirely eliminated.

Additionally, while not strictly an example of CRTP, integer template parameters are also
heavily used in class templates. The two main advantages of this are that it allows ob-
jects to encapsulate their own (statically allocated) memory, and that it allows the com-
piler to make compile time loop optimizations that it may not otherwise be able to make.

The downside to CRTP is that it tends to lead to highly verbose class type names, where
templated classes end up with type parameter assignments are themselves templated
classes with their own template parameters.

Sub-Component Initialization

Each of MicArray’s sub-components may have implementation-specific configuration
or initialization requirements. Each sub-component is a publicmember of MicArray
(see table above). An application can access a sub-component directly to perform any
type-specific initialization or other manipulation.

For example, the ChannelFrameTransmitter output handler class needs to know the
chanend to be used for sending samples. This can be initialized on a MicArray object
mics with mics.OutputHandler.SetChannel(c_sample_out).

6.2 Sub-Components

PdmRx

PdmRx, or the PDM rx service is the MicArray sub-component responsible for captur-
ing PDM sample data, assembling it into blocks, and passing it along so that it can be
decimated.

The MicArray class requires only that PdmRx implement GetPdmBlock(), a blocking
call that returns a pointer to a block of PDM data which is ready for further processing.

Generally speaking, PdmRx will derive from the PdmRxService class template.
PdmRxService encapsulates the logic of using an xCore port for capturing PDM sam-
ples one word (32 bits) at a time, and managing two buffers where blocks of samples
are collected. It also simplifies the logic of running PDM rx as either an interrupt or as a
stand-alone thread.

PdmRxService has 2 template parameters. The first is the BLOCK_SIZE, which speci-
fies the size of a PDM sample block (in words). The second, SubType, is the type of the
sub-class being derived from PdmRxService. This is the CRTP (Curiously Recurring
Template Pattern), which allows a base class to use polymorphic-like behaviors while
ensuring that all types are known at compile-time, avoiding the drawbacks of using vir-
tual functions.

22

lib_mic_array: PDM microphone array library

There is currently one class template which derives from PdmRxService, called
StandardPdmRxService. StandardPdmRxService uses a streaming channel to
transfer PDM blocks to the decimator. It also provides methods for installing an opti-
mized ISR for PDM capture.

Decimator

The Decimator sub-component encapsulates the logic of converting blocks of PDM
samples into PCM samples. The TwoStageDecimator class is a decimator implemen-
tation that uses a pair of decimating FIR filters to accomplish this.

The first stage has a fixed tap count of 256 and a fixed decimation factor of 32. The
second stage has a configurable tap count and decimation factor.

For more details, see Decimator Stages.

SampleFilter

The SampleFilter sub-component is used for post-processing samples emitted by
the decimator. Two implementations for the sample filter sub-component are provided
by this library.

The NopSampleFilter class can be used to effectively disable per-sample filtering on
the output of the decimator. It does nothing to the samples presented to it, and so calls
to it can be optimized out during compilation.

The DcoeSampleFilter class is used for applying the DC offset elimination filter to the
decimator’s output. The DC offset elimination filter is meant to ensure the sample mean
for each channel tends toward zero.

For more details, see Sample Filters.

OutputHandler

The OutputHandler sub-component is responsible for transferring processed sample
data to subsequent processing stages.

There are two main considerations for output handlers. The first is whether audio data
should be transferred sample-by-sample or as frames containing many samples. The
second is the method of actually transferring the audio data.

The class ChannelSampleTransmitter sends samples one at a time to subsequent
processing stages using an xCore channel.

The FrameOutputHandler class collects samples into frames, and uses a frame trans-
mitter to send the frames once they’re ready.

Prefabs

One of the drawbacks to broad use of class templates is that concrete class names can
unfortunately become excessively verbose and confusing. For example, the following is
the fully qualified name of a (particular) concrete MicArray implementation:
mic_array::MicArray<2,

mic_array::TwoStageDecimator<2,6,65>,
mic_array::StandardPdmRxService<2,2,6>,
mic_array::DcoeSampleFilter<2>,
mic_array::FrameOutputHandler<2,256,

mic_array::ChannelFrameTransmitter>>

This library also provides a C++ namespace mic_array::prefabwhich is intended to
simplify construction of MicArray objects where common configurations are needed.

23

lib_mic_array: PDM microphone array library

The BasicMicArray class template uses the most typical component implementa-
tions, where PDM rx can be run as an interrupt or as a stand-alone thread, and where
audio frames are transmitted to subsequent processing stages using a channel.

To demonstrate how BasicMicArray simplifies this process, observe that the follow-
ing MicArray type is behaviorally identical to the above:
mic_array::prefab::BasicMicArray<2,256,true>

7 Mic Array Resource Usage

The mic array unit requires several kinds of hardware resources, including ports, clock
blocks, chanends, hardware threads, compute time (MIPS) and memory. Compared to
previous versions of this library, the biggest advantage to the current version with re-
spect to hardware resources is a greatly reduced compute requirement. This was made
possible by the introduction of the VPU in the XMOS XS3 architecture. The VPU can do
certain operations in a single instruction which would take many, many instructions on
previous architectures.

This page attempts to capture the requirements for each hardware type with relevant
configurations.

Warning: The usage information below applies when the Vanilla API or prefab
APIs are used. Resource usage in an application which uses custom mic array sub-
components will depend crucially on the specifics of the customization.

7.1 Discrete Resources

Resource Count

port 3
clock block 1 (SDR)

2 (DDR)
chanend 4
thread 1 (Vanilla)

1 or 2 (prefab)

Ports

In all configurations, the mic array unit requires 3 of the xcore.ai device’s hardware ports.
Two of these ports (for the master audio clock and PDM clock) must be 1-bit ports. The
third (PDM capture port) can be 1-, 4- or 8-bit, depending on the microphone count and
SDR/DDR configuration.

Clock Blocks

In applications which use an SDR microphone configuration, the mic array unit requires
1 of the xcore.ai device’s 5 clock blocks. This clock block is used both to generate the
PDM clock from the master audio clock and as the PDM capture clock.

In applications which use a DDR microphone configuration, the mic array unit requires 2
of the xcore.ai device’s 5 clock blocks. One clock is used to generate the PDM clock from
the master audio clock, and the other is used as the PDM capture clock (which must
operate at different rates in a DDR configuration).

24

lib_mic_array: PDM microphone array library

Chanends

Chanends are a hardware resource which allow threads (possibly running on different
tiles) to communicate over channels. The mic array unit requires 4 chanends. Two are
used for communication between the PDM rx service and the decimation thread. Two
more are needed for transfering completed frames from the mic array unit to other ap-
plication components.

Threads

The prefab API can run the PDM rx service either as a stand-alone thread or as an in-
terrupt in another thread. The Vanilla API only supports running it as an interrupt. The
Vanilla API requires only on hardware thread. The prefab API requires 1 thread if PDM rx
is used in interrupt mode, and 2 if PDM rx is a stand-alone thread..

Running PDM rx as a stand-alone thread modestly reduces the mic array unit’s MIPS
consumption by eliminating the context switch overhead of an interrupt. The cost of
that is one hardware thread.

Note: When configured as an interrupt, PDM rx ISR is typically configured on the decima-
tion thread, but this is not a strict requirement. The PDM rx interrupt can be configured
for any thread on the same tile as the decimation thread. They must be on the same tile
because shared memory is used between the two contexts.

7.2 Compute

The compute requirement of the mic array unit depends strongly on the actual configu-
ration being used. The compute requirement is expressed in millions of instructions per
second (MIPS) and is approximately linearly related to many of the configuration param-
eters.

Each tile of an xcore.ai device has 8 hardware threads and a 5 stage pipline. The exact
calculation of howmanyMIPS are available to a thread is complicated, and is, in general,
affected by both the number of threads being used, as well as the work being done by
each thread.

As a rule of thumb, however, the core scheduler will offer each thread a mini-
mum of CORE_CLOCK_MHZ/8 millions of instruction issue slots per second (~MIPS),
and no more than CORE_CLOCK_MHZ/5 millions of issue slots per second, where
CORE_CLOCK_MHZ is the core CPU clock rate. With a core clock rate of 600 MHz, that
means that each core should expect at least 75 MIPS.

The MIPS values in the table below are estimates obtained using the demo applications
in demo/measure_mips.

25

lib_mic_array: PDM microphone array library

PDM
Freq

S2DF S2TC PdmRx 1 mic
MIPS

2 mic
MIPS

4 mic
MIPS

8 mic
MIPS

3.072
MHz

6 65 ISR 10.65 22.00 43.70 N/A

3.072
MHz

6 65 Thread 9.33 19.37 38.48 75.90

6.144
MHz

6 65 ISR 21.26 43.89 TBD TBD

6.144
MHz

6 65 Thread 18.66 38.73 TBD TBD

3.072
MHz

3 65 ISR 12.90 26.44 TBD TBD

3.072
MHz

3 65 Thread 11.62 23.85 TBD TBD

3.072
MHz

6 130 ISR 11.17 23.04 TBD TBD

3.072
MHz

6 130 Thread 9.86 20.42 TBD TBD

PDM Freq
Frequency of the PDM clock.

S2DF
Stage 2 decimation factor. Output sample rate is (PDM Freq / (32 * S2DF)).

S2TC
Stage 2 tap count.

PdmRx
Whether PDM capture is done in a stand-alone thread or in an ISR.

Measurements indicate that enabling or disabling the DC offset removal filter has little
effect on the MIPS usage. The selected frame size has only a slight negative correlation
with MIPS usage.

7.3 Memory

Thememory cost of themic array unit has three parts: code, stack and data. Code is the
memory needed to store compiled instructions in RAM. Stack is the memory required to
store intermediate results during function calls, and data is the memory used to store
persistant objects, variables and constants.

The stack memory requirement is minimal. The code memory requirement depends on
the particular configuration, but ranges from about 1600 bytes in a 1 mic configuration
to about 2000 bytes in an 8 mic configuration.

Not included in the table is the space allocated for the first and second stage filter coef-
ficients. The first stage filter coefficients take a constant 523 bytes. The second stage
filter coefficients use 4*S2TC bytes, where S2TC is the stage 2 decimator tap count. The
value shown in the ‘data’ column of the table is the sizeof() the BasicMicArray that
is instantiated. The table below indicates the data size for various configurations.

26

lib_mic_array: PDM microphone array library

Mics S2DF S2TC SPF DCOE Data Memory

1 6 65 16 On 504 B
2 6 65 16 On 968 B
4 6 65 16 On 1888 B
8 6 65 16 On 3728 B
1 6 65 16 On 768 B
2 6 130 16 On 1488 B
1 6 130 16 On 576 B
2 12 65 16 On 1112 B
1 12 65 160 On 1080 B
2 6 65 160 On 2120 B
1 6 65 16 Off 496 B
2 6 65 16 Off 948 B

S2DF
Stage 2 decimator’s decimation factor.

S2TC
Stage 2 decimator’s tap count.

SPF
Samples per frame in frames delivered by the mic array unit.

DCOE
DC Offset Elimination

8 Vanilla API

The Vanilla API is a small optional API which greatly simplifies the process of including a
mic array unit in an xcore.ai application. Most applications that make use of a PDMmic
array will not have complicated needs from the mic array software component beyond
delivery of frames of audio data froma configurable set ofmicrophones at a configurable
rate. This API targets that majority of applications.

The prefab API requires the application developer to have at least some minimal under-
standing of the objects and classes associated with the mic array unit, and requires the
developer to write some application-specific code to configure and start the mic array.
The Vanilla API (which builds on top of the prefabmodel) by contrast, requires as little as
two standard function calls, and instead moves the majority of the application logic into
the application’s build project.

Note: Why “Vanilla”? “Vanilla” was originally meant as a generic placeholder name, but
no better name was ever suggested.

8.1 How It Works

The Vanilla API comprises two code files, etc/vanilla/mic_array_vanilla.cpp
and etc/vanilla/mic_array_vanilla.h which are not compiled as part of this
library. Instead, if used, these are added to the application target’s build. To control con-
figuration, the source file relies on a set of pre-processor macros (added via compile
flags) which determine how the mic array unit will be instantiated.

27

lib_mic_array: PDM microphone array library

The API is included in an application by using a CMake macro
(mic_array_vanilla_add()) provided in this library. The macro updates the
application’s sources, includes and compile definitions to include the API.

In the application code, two function calls are needed. First, ma_vanilla_init() is
called to initialize the various mic array sub-components, preparing for capture of PDM
data. Then, to start capture the decimation thread is started with ma_vanilla_task()
as entrypoint. ma_vanilla_task() takes an XCore chanend as a parameter, which
tells it where completed audio frames should be routed.

Note: The Vanilla API runs the PDM rx service as an interrupt in the decimation thread.
To run it as a separate thread (for reduced totalMIPS consumption) one of the lower-level
APIs must be used.

As with the prefab API, audio frames are extracted from the mic array unit over a (non-
streaming) channel using the ma_frame_rx() or ma_frame_rx_transpose() func-
tions.

Note: The Vanilla API uses the default filters provided with this library, and does not
currently provide a way to override this. To use custom filters, you must either use a
lower-level API or modify the vanilla API.

8.2 Configuration

Configuration with the Vanilla API is achieved through compile definitions. The required
definitions are provided through the mic_array_vanilla_add() macro. There are
several additional optional definitions.

mic_array_vanilla_add()

mic_array_vanilla_add() is the CMake macro used to add the Vanilla API to an
application.
macro(mic_array_vanilla_add

TARGET_NAME
MCLK_FREQ
PDM_FREQ
MIC_COUNT
SAMPLES_PER_FRAME)

TARGET_NAME
The name of the application’s CMake target. It is the target the Vanilla API is added
to.

MCLK_FREQ
The known frequency, in Hz, of the application’s master audio clock. A typical fre-
quency is 24576000 Hz. Note that this parameter is not configuring the master
audio clock. (Equivalent compile definition: MIC_ARRAY_CONFIG_MCLK_FREQ)

PDM_FREQ
The desired frequency, in Hz, of the PDM clock. This should be an inte-
ger factor of MCLK_FREQ between 1 and 510. (Equivalent compile definition:
MIC_ARRAY_CONFIG_PDM_FREQ)

MIC_COUNT
The number of PDM microphone channels to be captured. This API supports val-
ues of 1 (SDR), 2 (DDR), 4 (SDR) and 8 (SDR/DDR). This value must match the

28

lib_mic_array: PDM microphone array library

configuration (SDR/DDR) and port width of the PDM capture port. That is, in an
SDR port configuration, MIC_COUNTmust equal the capture port width, and in DDR
port configuration, MIC_COUNTmust be twice the port width. (Equivalent compile
definition: MIC_ARRAY_CONFIG_MIC_COUNT)

Note: This API does not support capturing only a subset of the capture port’s channels,
e.g. capturing only 3 channels on a 4-bit port. To accomplish this the prefab API should
be used.

Note: Though listed under Optional Configuration below, if the microphones are
in a DDR configuration and MIC_COUNT is not 2, the application must also define
MIC_ARRAY_CONFIG_USE_DDR.

SAMPLES_PER_FRAME is the number of samples (for each microphone channel) that
will be delivered in each (non-overlapping) frame retrieved by ma_frame_rx(). A mini-
mum value of 1 is supported, to deliver samples one at a time. The larger this value, the
looser the real-time constraint on the thread receiving the mic array unit’s output (while
also increasing the amount of audio data to be processed).

Optional Configuration

These are configuration parameters that receive default values but can be optionally
overridden by an application. These can be defined in your application’s CMakeLists.
txt using CMake’s built-in target_compile_definitions() command.

MIC_ARRAY_CONFIG_USE_DDR
Indicates whether the microphones are arranged in an SDR (0) or DDR (1)
configuration. An SDR configuration is one in which each port pin is con-
nected to a single PDM microphone. A DDR configuration is one which each
port pin is connected to two PDM microphones. Defaults to 0 (SDR), unless
MIC_ARRAY_CONFIG_MIC_COUNT is 2 in which case it defaults to 1 (DDR).

MIC_ARRAY_CONFIG_USE_DC_ELIMINATION
Indicates whether the DC offset elimination filter should be applied to the output of
the decimator. Set to 0 to disable or 1 to enable. Defaults to 1 (filter on).

The next three parameters are the identifiers for hardware port resources used by themic
array unit. They can be specified as either the identifier listed in your device’s datasheet
(e.g. XS1_PORT_1D) or as an alias for the port listed in your application’s XN file (e.g.
PORT_MCLK_IN_OUT). For example:
...
<Tile Number="0" Reference="tile[0]">
...
<Port Location="XS1_PORT_1D" Name="PORT_MCLK_IN_OUT"/>

...
</Tile>
...

MIC_ARRAY_CONFIG_PORT_MCLK
Identifier of the 1-bit port on which the device is receiving the master audio clock.
Defaults to PORT_MLCK_IN_OUT.

MIC_ARRAY_CONFIG_PORT_PDM_CLK
Identifier of the 1-bit port on which the device will signal the PDM clock to the mi-
crophones. Defaults to PORT_PDM_CLK.

29

lib_mic_array: PDM microphone array library

MIC_ARRAY_CONFIG_PORT_PDM_DATA
Identifier of the port on which the device will capture PDM sam-
ple data. The port width of this port must match the MIC_COUNT
parameter given to mic_array_vanilla_add() and the value of
MIC_ARRAY_CONFIG_USE_DDR. Defaults to PORT_PDM_DATA.

The final two parameters indicate which clock block resource(s) should be used to gen-
erate the PDM clock and the capture clock. An xcore.ai device provides 5 hardware clock
blocks for application use, identified as XS1_CLKBLK_1 through XS1_CLKBLK_5. The
device’s clock blocks are interchangeable, but if another component of your application
uses one of these defaults, you may need to change these parameters.

MIC_ARRAY_CONFIG_CLOCK_BLOCK_A
Clock block used as ‘clock A’ (see Getting Started). This clock block is used in both
SDR and DDR configurations.

MIC_ARRAY_CONFIG_CLOCK_BLOCK_B
Clock block used as ‘clock B’ (see Getting Started). This clock block is only needed
in DDR configurations and is ignored (not configured) in SDR configurations.

Vanilla API with other Build Systems

Using the Vanilla API with build systems other than CMake is simple.

· Add the file etc/vanilla/mic_array_vanilla.cpp to the application’s source
files.

· Add etc/vanilla/ (relative to repository root) to the application include paths.

· Add the compile definitions for the parameters listed in the previous sections
(each parameter beginning with MIC_ARRAY_CONFIG_) to the compile options for
mic_array_vanilla.cpp.

9 API Reference

9.1 C++ API Reference

MicArray

template<unsigned MIC_COUNT, class TDecimator, class TPdmRx, class
TSampleFilter, class TOutputHandler>
class MicArray

Represents the microphone array component of an application.
Like many classes in this library, FrameOutputHandler uses the Curiously Recurring
Template Pattern.

Template Parameters

· MIC_COUNT – The number of microphones to be captured by
the MicArray’s PdmRx component. For example, if using a 4-
bit port to capture 6 microphone channels in a DDR configuration
(because there are no 3 or 6 pin ports) MIC_COUNT should be 8,
because that’s how many must be captured, even if two of them
are stripped out before passing audio frames to subsequent ap-
plication stages.

· TDecimator – Type for the decimator. See Decimator.
· TPdmRx – Type for the PDM rx service used. See PdmRx.

30

lib_mic_array: PDM microphone array library

· TSampleFilter – Type for the output filter used. See Sample-
Filter.

· TOutputHandler – Type for the output handler used. See Out-
putHandler.

Public Functions

inline MicArray()
Construct a MicArray.
This constructor uses the default constructor for each of its components,
PdmRx, Decimator, SampleFilter, and OutputHandler.

inline MicArray(TPdmRx pdm_rx, TSampleFilter sample_filter, TOutputHandler
output_handler)

Construct a MicArray.
This constructor uses the default constructor for its Decimator component.
The remaining components are initialized with the supplied objects.

Parameters

· pdm_rx – The PDM rx object.
· sample_filter – The SampleFilter object.
· output_handler – The OutputHandler object.

inline MicArray(TPdmRx pdm_rx, TOutputHandler output_handler)
Construct a MicArray
This constructor uses the default constructor for its Decimator and Sample-
Filter components.
The remaining components are initialized with the supplied objects.

Parameters

· pdm_rx – The PDM rx object.
· output_handler – The OutputHandler object.

void ThreadEntry()
Entry point for the decimation thread.
This function does not return. It loops indefinitely, collecting blocks of PDM
data from PdmRx (which must have already been started), uses Decimator
to filter and decimate the sample stream to the output sample rate, applies
any post-processing with SampleFilter, and then delivers the stream of output
samples through OutputHandler.

Public Members

TPdmRx PdmRx
The PDM rx service.
The template parameter TPdmRx is the concrete class implementing the mi-
crophone array’s PDM rx service, which is responsible for collecting PDMsam-
ples from a port and delivering them to the decimation thread.
TPdmRx is only required to implement one function, GetPdmBlock():
uint32_t* GetPdmBlock();

GetPdmBlock() returns a pointer to a block of PDM data, formatted as
expected by the decimator. GetPdmBlock() is called from the decimator
thread and is expected to block until a new full block of PDM data is available
to be decimated.

31

lib_mic_array: PDM microphone array library

For example, StandardPdmRxService::GetPdmBlock() waits to receive a
pointer to a block of PDM data from a streaming channel. The pointer is sent
from the PdmRx interrupt (or thread) when the block has been completed.
This is used for capturing PDM data from a port.

TDecimator Decimator
The Decimator.
The template parameterTDecimator is the concrete class implementing the
microphone array’s decimation procedure. TDecimator is only required to
implement one function, ProcessBlock():
void ProcessBlock(

int32_t sample_out[MIC_COUNT],
uint32_t pdm_block[BLOCK_SIZE]);

ProcessBlock() takes a block of PDM samples via its pdm_block param-
eter, applies the appropriate decimation logic, and outputs a single (multi-
channel) sample sample via its sample_out parameter. The size and for-
matting of the PDMblock expected by the decimator depends on its particular
implementation.
A concrete class based on themic_array::TwoStageDecimator class template
is used in the prefab::BasicMicArray prefab.

TSampleFilter SampleFilter
The output filter.
The template parameter TSampleFilter is the concrete class implement-
ing the microphone array’s sample filter component. This component can
be used to apply additional non-decimating, non-interpolating filtering of
samples. TSampleFilter() is only required to implement one function,
Filter():
void Filter(int32_t sample[MIC_COUNT]);

Filter() takes a single (multi-channel) sample from the decimator compo-
nent’s output and may update the sample in-place.
For example a sample filter based on the DcoeSampleFilter class template
applies a simple first-order IIR filter to the output of the decimator, in order to
eliminate the DC component of the audio signals.
If no additional filtering is required, the NopSampleFilter class template can
be used for TSampleFilter, which leaves the sample unmodified. In this
case, it is expected that the call to NopSampleFilter::Filter() will ultimately get
completely eliminated at build time. That way no addition run-time compute
or memory costs need be introduced for the additional flexibility.
Even though TDecimator and TSampleFilter both (possibly) apply filter-
ing, they are separate components of the MicArray because they are con-
ceptually independent.
A concrete class based on either the DcoeSampleFilter class template or the
NopSampleFilter class template is used in the prefab::BasicMicArray prefab,
depending on the USE_DCOE parameter of that class template.

TOutputHandler OutputHandler
The output handler.
The template parameter TOutputHandler is the concrete class implement-
ing the microphone array’s output handler component. After the PDM input
stream has been decimated to the appropriate output sample rate, and af-
ter any post-processing of that output stream by the sample filter, the output
samples must be delivered to another thread for any additional processing. It

32

lib_mic_array: PDM microphone array library

is the responsibility of this component to package and deliver audio samples
to subsequent processing stages.
TOutputHandler is only required to implement one function,
OutputSample():
void OutputSample(int32_t sample[MIC_COUNT]);

OutputSample() is called exactly once for each mic array output sample.
OutputSample() may block if necessary until the subsequent processing
stage ready to receive new data. However, the decimator thread (in which
OutputSample() is called) as a whole has a real-time constraint - it must
be ready to pull the next block of PDM data while it is available.
A concrete class based on the FrameOutputHandler class template is used in
the prefab::BasicMicArray prefab.

Public Static Attributes

static constexpr unsigned MicCount = MIC_COUNT
Number of microphone channels.

33

lib_mic_array: PDM microphone array library

BasicMicArray

template<unsigned MIC_COUNT, unsigned FRAME_SIZE, bool USE_DCOE, unsigned
MICS_IN = MIC_COUNT>
class BasicMicArray : public mic_array::MicArray<MIC_COUNT,
TwoStageDecimator<MIC_COUNT, STAGE2_DEC_FACTOR, STAGE2_TAP_COUNT>,
StandardPdmRxService<MIC_COUNT, MIC_COUNT, STAGE2_DEC_FACTOR>,
std::conditional<USE_DCOE, DcoeSampleFilter<MIC_COUNT>,
NopSampleFilter<MIC_COUNT»::type, FrameOutputHandler<MIC_COUNT, FRAME_SIZE,
ChannelFrameTransmitter»

Class template for a typical bare-metal mic array unit.
This prefab is likely the right starting point for most applications.
With this prefab, the decimator will consume one device core, and the PDM rx ser-
vice can be run either as an interrupt, or as an additional thread. Normally running
as an interrupt is recommended.
For the first and second stage decimation filters, this prefab uses the coefficients
provided with this library. The first stage uses a decimation factor of 32, and the
second stage is configured to use a decimation factor of 6.
To get 16 kHz audio output from the BasicMicArray prefab, then, the PDM clock
must be configured to 3.072 MHz (3.072 MHz / (32 * 6) = 16 kHz).

Sub-Components
Being derived from mic_array::MicArray, an instance of BasicMicArray
has 4 sub-components responsible for different portions of the work being
done. These sub-components are PdmRx, Decimator, SampleFilter and
OutputHandler. See the documentation for MicArray for more details
about these.

Template Parameters Details

The template parameter MIC_COUNT is the number of microphone channels
to be processed and output.
The template parameter FRAME_SIZE is the number of samples in each out-
put frame produced by the mic array. Frame data is communicated using the
API found in mic_array/frame_transfer.h. Typically ma_frame_rx()
will be the right function to use in a receiving thread to retrieve audio
frames. ma_frame_rx() receives audio frames with shape (MIC_COUNT,
FRAME_SIZE), meaning that all samples corresponding to a given channel
will end up in a contiguous block of memory. Instead of ma_frame_rx(),
ma_frame_rx_transpose() can be used to swap the dimensions, result-
ing in the shape (FRAME_SIZE, MIC_COUNT).
Note that calls to ma_frame_rx() or ma_frame_rx_transpose() will
block until a frame becomes available on the specified chanend.
If the receiving thread is not waiting to retrieve the audio frame from the mic
array when it becomes available, the pipelinemay back up and cause samples
to be dropped. It is the responsibility of the application developer to ensure
this does not happen.
The boolean template parameter USE_DCOE indicates whether the DC offset
elimination filter should be applied to the output of the second stage decima-
tor. DC offset elimination is an IIR filter intended to ensure audio samples on
each channel tend towards zero-mean.

For more information about DC offset elimination, see Sample Filters .

34

lib_mic_array: PDM microphone array library

If USE_DCOE is false, no further filtering of the second stage decimator’s
output will occur.
The template parameter MICS_IN indicates the number ofmicrophone chan-
nels to be captured by the PdmRx component of the mic array unit. This will
often be the same as MIC_COUNT, but in some applications, MIC_COUNT
microphones must be physically connected to an XCore port which is not
MIC_COUNT (SDR) or MIC_COUNT/2 (DDR) bits wide.
In these cases, capturing the additional channels (likely not even physi-
cally connected to PDM microphones) is unavoidable, but further process-
ing of the additional (junk) channels can be avoided by using MIC_COUNT
< MICS_IN. The mapping which tells the mic array unit how to derive
output channels from input channels can be configured during initialization
by calling StandardPdmRxService::MapChannels() on the PdmRx sub-
component of the BasicMicarray.
If the application uses an SDR microphone configuration (i.e. 1 microphone
per port pin), then MICS_INmust be the same as the port width. If the appli-
cation is running in a DDRmicrophone configuration, MICS_INmust be twice
the port width. MICS_IN defaults to MIC_COUNT.

Allocation

Before a mic array unit can be started or initialized, it must be allocated.
Instances of BasicMicArray are self-contained with respect to memory,
needing no external buffers to be supplied by the application. Allocating an
instance is most easily accomplished by simply declaring the mic array unit.
An example follows.

#include "mic_array/cpp/Prefab.hpp"
...
using AppMicArray = mic_array::prefab::BasicMicArray<MICS,SAMPS,DCOE>;
AppMicArray mics;

Here, mics is an allocated mic array unit. The example (and all that follow)
assumes the macros used for template parameters are defined elsewhere.

Initialization

Before a mic array unit can be started, it must be initialized.
BasicMicArray reads PDM samples from an XCore port, and delivers
frames of audio data over an XCore channel. To this end, an instance of
BasicMicArray needs to be given the resource IDs of the port to be read
and the chanend to transmit frames over. This can be accomplished in either
of two ways.
If the resource IDs for the port and chanend are available as themic array unit
is being allocated, one option is to explicitly construct the BasicMicArray
instance with the required resource IDs using the two-argument constructor:

using AppMicArray = mic_array:prefab::BasicMicArray<MICS,SAMPS,DCOE>;
AppMicArray mics(PORT_PDM_MICS, c_frames_out);

Otherwise (typically), these can be set us-
ing BasicMicArray::SetPort(port_t) and
BasicMicArray::SetOutputChannel(chanend_t) to set the port
and channel respectively.

35

lib_mic_array: PDM microphone array library

AppMicArray mics;
...
void app_init(port_t p_pdm_mics, chanend_t c_frames_out)
{
mics.SetPort(p_pdm_mics);
mics.SetOutputChannel(p_pdm_mics);
}

Next, the ports and clock block(s) used by the PDM rx service need to
be configured appropriately. This is not accomplished directly through
the BasicMicArray object. Instead, a pdm_rx_resources_t struct
representing these hardware resources is constructed and passed to
mic_array_resources_configure(). See the documentation for
pdm_rx_resources_t and mic_array_resources_configure() for
more details.
Finally, if running BasicMicArray’s PDM rx service within an ISR, before the
mic array unit can be started, the ISRmust be installed. This is accomplished
with a call to BasicMicArray::InstallPdmRxISR(). Installing the ISR
will not unmask it.

Begin Processing (PDM rx ISR)

After it has been initialized, starting the mic array unit with the PDM rx service
running as an ISR, three steps are required.
First, the PDM clock must be started. This is accomplished with a call
to mic_array_pdm_clock_start(). The same pdm_rx_resources_t
that was passed to mic_array_resources_configure() is given as an
argument here.
Second, the PDM rx ISR that was installed during initializa-
tion must be unmasked. This is accomplished by calling
BasicMicArray::UnmaskPdmRxISR() on the mic array unit.
Finally, the mic array processing thread must be started. The entry point for
the mic array thread is BasicMicArray::ThreadEntry().
A typical pattern will include all three of these steps in a single function which
wraps the mic array thread entry point.

AppMicArray mics;
pdm_rx_resources_t pdm_res;
...
MA_C_API // alias for 'extern "C"'
void app_mic_array_task()
{
mic_array_pdm_clock_start(&pdm_res);
mics.UnmaskPdmRxISR();
mics.ThreadEntry();
}

Using this pattern, app_mic_array_task() is a C-compatible function
which can be called from a multi-tile main() in an XC file. Then,
app_mic_array_task() is called directly from a par {...} block. For
example,

main(){
...
par {
on tile[1]: {

... // Do initialization stuff

par {
app_mic_array_task();
...
other_thread_on_tile1(); // other threads

(continues on next page)

36

lib_mic_array: PDM microphone array library

(continued from previous page)
}

}
}
}

Begin Processing (PDM Rx Thread)

The procedure for running the mic array unit with the PDM rx component run-
ning as a stand-alone thread is much the same with just a couple key differ-
ences.
When running PDM rx as a thread, no call to
BasicMicArray::UnmaskPdmRxISR() is necessary. Instead, the ap-
plication spawns a second thread (the first being the mic array processing
thread) using BasicMicArray::PdmRxThreadEntry() as the entry point.
mic_array_pdm_clock_start()must still be called, but here the require-
ment is that it be called from the hardware thread on which the PDM rx com-
ponent is running (which, of course, cannot be the mic array thread).
A typical applicationwith amulti-tile XCmain()will provide twoC-compatible
functions - one for each thread:

MA_C_API
void app_pdm_rx_task()
{
mic_array_pdm_clock_start(&pdm_res);
mics.PdmRxThreadEntry();
}

MA_C_API
void app_mic_array_task()
{
mics.ThreadEntry();
}

Notice that app_mic_array_task() above is a thin wrapper for mics.
ThreadEntry(). Unfortunately, because the type of mics is a C++ class,
mics.ThreadEntry() cannot be called directly from an XC file (including
the one containing main()). Further, because a C++ class template was
used, this library cannot provide a generic C-compatible call wrapper for the
methods on a MicArray object. This unfortunately means it is necessary in
some cases to create a thin wrapper such as app_mic_array_task().
The threads are spawned from XC main using a par {...} block:

main(){
...
par {
on tile[1]: {

... // Do initialization stuff

par {
app_mic_array_task();
app_pdm_rx_task();
...
other_thread_on_tile1(); // other threads

}
}

}
}

Real-Time Constraint

Once the PDM rx thread is launched or the PDM rx interrupt has been un-
masked, PDM data will start being collected and reported to the decimator

37

lib_mic_array: PDM microphone array library

thread. The application then must start the decimator thread within one out-
put sample time (i.e. sample time for the output of the second stage decima-
tor) to avoid issues.
Once the mic array processing thread is running, the real-time constraint is
active for the thread consuming themic array unit’s output, and itmustwaiting
to receive an audio frame within one frame time.

Examples
This library comes with examples which demonstrate how a mic array unit
is used in an actual application. If you are encountering difficulties getting
BasicMicArray to work, studying the provided examples may help.

Note: BasicMicArray::InstallPdmRxISR() installs the ISR on the hardware
thread that calls the method. In most cases, installing it in the same thread as the
decimator is the right choice.

Template Parameters

· MIC_COUNT – Number of microphone channels.
· FRAME_SIZE – Number of samples in each output audio frame.
· USE_DCOE – Whether DC offset elimination should be used.

Public Types

using TParent = MicArray<MIC_COUNT, TwoStageDecimator<MIC_COUNT,
STAGE2_DEC_FACTOR, STAGE2_TAP_COUNT>, StandardPdmRxService<MICS_IN,
MIC_COUNT, STAGE2_DEC_FACTOR>, typename std::conditional<USE_DCOE,
DcoeSampleFilter<MIC_COUNT>, NopSampleFilter<MIC_COUNT»::type,
FrameOutputHandler<MIC_COUNT, FRAME_SIZE, ChannelFrameTransmitter»

TParent is an alias for this class template from which this class template
inherits.

Public Functions

inline constexpr BasicMicArray() noexcept
No-argument constructor.
This constructor allocates the mic array and nothing more.
Call BasicMicArray::Init() to initialize the decimator.
Subsequent calls to BasicMicArray::SetPort() and
BasicMicArray::SetOutputChannel() will also be required before
any processing begins.

void Init()
Initialize the decimator.

BasicMicArray(port_t p_pdm_mics, chanend_t c_frames_out)
Initialzing constructor.
If the communication resources required by BasicMicArray are known at
construction time, this constructor can be used to avoid further initialization
steps.
This constructor does not install the ISR for PDM rx, and so thatmust be done
separately if PDM rx is to be run in interrupt mode.

38

lib_mic_array: PDM microphone array library

Parameters

· p_pdm_mics – Port with PDM microphones
· c_frames_out – (non-streaming) chanend used to transmit

frames.
void SetPort(port_t p_pdm_mics)

Set the PDM data port.
This function calls this->PdmRx.Init(p_pdm_mics).
This should be called during initialization.

Parameters
p_pdm_mics – The port to receive PDM data on.

void SetOutputChannel(chanend_t c_frames_out)
Set the audio frame output channel.
This function calls this->OutputHandler.FrameTx.
SetChannel(c_frames_out).
This must be set prior to entrying the decimator task.

Parameters
c_frames_out – The channel to send audio frames on.

void PdmRxThreadEntry()
Entry point for PDM rx thread.
This function calls this->PdmRx.ThreadEntry().

Note: This call does not return.

void InstallPdmRxISR()
Install the PDM rx ISR on the calling thread.
This function calls this->PdmRx.InstallISR().

void UnmaskPdmRxISR()
Unmask interrupts on the calling thread.
This function calls this->PdmRx.UnmaskISR().

39

lib_mic_array: PDM microphone array library

PdmRxService

template<unsigned BLOCK_SIZE, class SubType>

class PdmRxService
Collects PDM sample data from a port.
Derivatives of this class template are intended to be used for the TPdmRx template
parameter ofMicArray, where it represents theMicArray::PdmRx component of the
mic array.
An object derived from PdmRxService collects blocks of PDM samples from a
port and makes them available to the decimation thread as the blocks are com-
pleted.
PdmRxService is a base class using CRTP. Subclasses extend PdmRxService
providing themselves as the template parameter SubType.
This base class provides the logic for aggregating PDM data taken from a port into
blocks, and a subclass is required to provide methods SubType::ReadPort(),
SubType::SendBlock() and SubType::GetPdmBlock().
SubType::ReadPort() is responsible for reading 1 word of data from
p_pdm_mics. See StandardPdmRxService::ReadPort() as an example.
SubType::SendBlock() is provided a block of PDM data as a pointer and is
responsible for signaling that to the subsequent processing stage. See Standard-
PdmRxService::SendBlock() as an example.
ReadPort() andSendBlock() are used byPdmRxService itself (when running
as a thread, rather than ISR).
SubType::GetPdmBlock() responsible for receiving a block of PDM data from
SubType::SendBlock() as a pointer, deinterleaving the buffer contents, and
returning a pointer to the PDM data in the format expected by the mic array unit’s
decimator component. See StandardPdmRxService::GetPdmBlock() as an exam-
ple.
GetPdmBlock() is called by the decimation thread. The pair of func-
tions, SendBlock() and GetPdmBlock() facilitate inter-thread communication,
SendBlock() being called by the transmitting end of the communication channel,
and GetPdmBlock() being called by the receiving end.

Template Parameters

· BLOCK_SIZE – Number of words of PDM data per block.
· SubType – Subclass of PdmRxService actually being used.

Public Functions

void SetPort(port_t p_pdm_mics)
Set the port from which to collect PDM samples.

void ProcessNext()
Perform a port read and if a new block has completed, signal.

void ThreadEntry()
Entry point for PDM processing thread.
This function loops forever, calling ProcessNext() with each iteration.

Public Static Attributes

40

lib_mic_array: PDM microphone array library

static constexpr unsigned BlockSize = BLOCK_SIZE
Number of words of PDM data per block.
Typically (e.g. TwoStageDecimator) BLOCK_SIZE will be exactly the number
of words of PDM samples required to produce exactly one new output sample
for the mic array unit’s output stream.
Once BlockSize words have been read into one of the block_data, buffers,
PDM rx will signal to the decimator thread that new PDM data is available for
processing.

StandardPdmRxService

struct pdm_rx_isr_context_t
PDM rx interrupt configuration and context.

Public Members

port_t p_pdm_mics
Port on which PDM samples are received.

uint32_t *pdm_buffer[2]
Pointers to a pair of buffers used for storing captured PDM samples.
The buffers themselves are allocated by an instance of
mic_array::PdmRxService. The idea is that while the PDM rx ISR is filling
one buffer, the decimation thread is busy processing the contents of the
other buffer. If the real-time constraint is maintained, the decimation thread
will be finished with the contents of its buffer before the PDM rx ISR fills the
other buffer. Once full, the PDM rx ISR does a double buffer pointer swap and
hands the newly-filled buffer to the decimation thread.

unsigned phase
Tracks the completeness of the buffer currently being filled.
Each read of samples from p_pdm_mics gives one word of data. This vari-
able tracks how many more port reads are required before the current buffer
has been filled.

unsigned phase_reset
The number of words to read from p_pdn_mics to fill a buffer.

chanend_t c_pdm_data
Streaming chanend the PDM rx ISR uses to signal the decimation thread that
another buffer is full and ready to be processed.
The streaming channel itself is allocated by
mic_array::StandardPdmRxService, which owns the other end of the channel.

unsigned credit
Used for detecting when the real-time constraint is violated by the decimation
thread.
Each time the decimation thread is given a block of PDM data to process,
credit is reset to 2. Each time the PDM rx ISR hands a block of PDM data
to the decimation thread, this is decremented.

41

lib_mic_array: PDM microphone array library

Deadlock Condition

mic_array::StandardPdmRxService uses a streaming channel to facilitate
communication between the two execution contexts used by the mic ar-
ray, the decimation thread and the PDM rx ISR. A streaming channel is
used because it allows the contexts to operate asynchronously.
A channel has a 2 word buffer, and as long as there is room in the buffer,
an OUT instruction putting a word (in this case, a pointer) into the channel
is guaranteed not to block. This is important because the PDM rx ISR
is typically configured on the same hardware thread as the decimation
thread.
If a thread is blocked on an OUT instruction to a channel, in order to un-
block the thread, an INmust be issued on the other end of that channel.
But because the PDM rx ISR is blocked, it cannot hand control back to the
decimation thread, which means the decimation thread can never issue
an IN instruction to unblock the ISR. The result is a deadlock.
Unfortunately, there is no way for a thread to query a chanend to deter-
mine whether it will block if an OUT instruction is issued. That is why
credit is used. Before issuing an OUT to c_pdm_data, the PDM rx ISR
checkswhether credit is non-zero. If so, the ISR issues the OUT instruc-
tion as normal and decrements credit.
If credit is zero, the default behavior of PDM rx ISR is to raise
an exception (ET_ECALL). This reflects the idea that it is gen-
erally better if system-breaking errors loudly announce themselves
(at least by default). If using mic_array::StandardPdmRxService,
this behavior can be changed by passing false in a call to
mic_array::StandardPdmRxService::AssertOnDroppedBlock(), which will
allow blocks of PDM data to be silently dropped (while still avoiding a
permanent deadlock).

unsigned missed_blocks
Controls and records anti-deadlock behavior.
If the PDM rx ISR finds that credit is 0when it’s time to send a filled buffer to
the decimation thread, it uses missed_blocks to control whether the PDM
rx ISR should raise an exception or silently drop the block of PDM data.
If missed_blocks is -1 (its default value) an exception is raised. Otherwise
missed_blocks is used to record the number of blocks that have been qui-
etly dropped.

pdm_rx_isr_context_t pdm_rx_isr_context
Configuration and context of the PDM rx ISR when
mic_array::StandardPdmRxService is used in interrupt mode.
pdm_rx_isr (pdm_rx_isr.S) directly allocates this object as configuration and
state parameters required by that interrupt routine.

static inline void enable_pdm_rx_isr(const port_t p_pdm_mics)
Configure port to use pdm_rx_isr as an interrupt routine.
This function configures p_pdm_mics to use pdm_rx_isr as its interrupt vector
and enables the interrupt on the current hardware thread.
This function does NOT unmask interrupts.

Parameters
p_pdm_mics – Port resource to enable ISR on.

template<unsigned CHANNELS_IN, unsigned CHANNELS_OUT, unsigned SUBBLOCKS>

42

lib_mic_array: PDM microphone array library

class StandardPdmRxService : public mic_array::PdmRxService<CHANNELS_IN *
SUBBLOCKS, StandardPdmRxService<CHANNELS_IN, CHANNELS_OUT, SUBBLOCKS»

PDM rx service which uses a streaming channel to send a block of data by pointer.
This class can run the PDM rx service either as a stand-alone thread or through an
interrupt.

Inter-context Transfer

Astreaming channel is used to transfer control of thePDMdata block between
execution contexts (i.e. thread->thread or ISR->thread).
The mic array unit receives blocks of PDM data from an instance of this class
by calling GetPdmBlock(), which blocks until a new PDM block is available.

Layouts

The buffer transferred by SendBlock() contains
CHANNELS_IN*SUBBLOCKS words of PDM data for CHANNELS_IN mi-
crophone channels. The words are stored in reverse order of arrival. See
mic_array::deinterleave_pdm_samples() for additional details on
this format.
Within GetPdmBlock() (i.e. mic array thread) the PDM data block is dein-
terleaved and copied to another buffer in the format required by the decima-
tor component, which is returned by GetPdmBlock(). This buffer contains
samples for CHANNELS_OUTmicrophone channels.

Channel Filtering

In some cases an application may be required to capture more micro-
phone channels than should actually be processed by subsequent process-
ing stages (including the decimator component). For example, this may be
the case if 4 microphone channels are desired but only an 8 bit wide port is
physically available to capture the samples.
This class template has a parameter both for the number of channels to be
captured by the port (CHANNELS_IN), as well as for the number of channels
that are to be output for consumption by the MicArray’s decimator compo-
nent (CHANNELS_OUT).
When the PDM microphones are in an SDR configuration, CHANNELS_IN
must be the width (in bits) of the XCore port to which the microphones are
physically connected. When in a DDR configuration, CHANNELS_INmust be
twice the width (in bits) of the XCore port to which the microphones are phys-
ically connected.
CHANNELS_OUT is the number of microphone channels to be consumed
by the mic array’s decimator component (i.e. must be the same as the
MIC_COUNT template parameter of the decimator component). If all port pins
are connected to microphones, this parameter will generally be the same as
CHANNELS_IN.

Channel Index (Re-)Mapping

43

lib_mic_array: PDM microphone array library

The input channel index of a microphone depends on the pin to which it is
connected. Each pin connected to a port has a bit index for that port, given in
the ‘Signal Description and GPIO’ section of your package’s datasheet.
Suppose an N-bit port is used to capture microphone data, and a microphone
is connected to bit B of that port. In an SDR microphone configuration, the
input channel index of that microphone is B, the same as the port bit index.
In a DDR configuration, that microphone will be on either input channel index
B or B+N, depending on whether that microphone is configured for in-phase
capture or out-of-phase capture.
Sometimes it may be desirable to re-order the microphone channel indices.
This is likely the case, for example, when CHANNELS_IN > CHANNELS_OUT.
By default output channels aremapped from the input channelswith the same
index. If CHANNELS_IN > CHANNELS_OUT, this means that the input chan-
nels with the highestCHANNELS_IN-CHANNELS_OUT indices are dropped by
default.
The MapChannel() and MapChannels()methods can be used to specify a
non-default mapping from input channel indices to output channel indices. It
takes a pointer to a CHANNELS_OUT-element array specifying the input chan-
nel index for each output channel.

Template Parameters

· CHANNELS_IN – The number of microphone channels to be cap-
tured by the port.

· CHANNELS_OUT– The number ofmicrophone channels to be de-
livered by this StandardPdmRxService instance.

· SUBBLOCKS – The number of 32-sample sub-blocks to be cap-
tured for each microphone channel.

Public Functions

uint32_t ReadPort()
Read a word of PDM data from the port.

Returns
A uint32_t containing 32 PDM samples. If MIC_COUNT >= 2
the samples from each port will be interleaved together.

void SendBlock(uint32_t block[CHANNELS_IN * SUBBLOCKS])
Send a block of PDM data to a listener.

Parameters
block – PDM data to send.

void Init(port_t p_pdm_mics)
Initialize this object with a channel and port.

Parameters
p_pdm_mics – Port to receive PDM data on.

void MapChannels(unsigned map[CHANNELS_OUT])
Set the input-output mapping for all output channels.
By default, input channel index kmaps to output channel index k.
This method overrides that behavior for all channels, re-mapping each output
channel such that output channel k is derived from input channel map[k].

Note: Changing the channel mapping while the mic array unit is running is
not recommended.

44

lib_mic_array: PDM microphone array library

Parameters
map – Array containing new channel map.

void MapChannel(unsigned out_channel, unsigned in_channel)
Set the input-output mapping for a single output channel.
By default, input channel index kmaps to output channel index k.
This method overrides that behavior for a single output channel, con-
figuring output channel out_channel to be derived from input channel
in_channel.

Note: Changing the channel mapping while the mic array unit is running is
not recommended.

Parameters

· out_channel – Output channel index to be re-mapped.
· in_channel–Newsource channel index forout_channel.

void InstallISR()
Install ISR for PDM reception on the current core.

Note: This does not unmask interrupts.

void UnmaskISR()
Unmask interrupts on the current core.

uint32_t *GetPdmBlock()
Get a block of PDM data.
Because blocks of PDM samples are delivered by pointer, the caller must ei-
ther copy the samples or finish processing thembefore the next block of sam-
ples is ready, or the data will be clobbered.

Note: This is a blocking call.

Returns
Pointer to block of PDM data.

void AssertOnDroppedBlock(bool doAssert)
Set whether dropped PDM samples should cause an assertion.
If doAssert is set to true (default), the PDM rx ISR will raise an exception
(ET_CALL) if it is ready to deliver a PDM block to the mic array thread when
the mic array thread is not ready to receive it. If false, dropped blocks can
be tracked through pdm_rx_isr_context.missed_blocks.

45

lib_mic_array: PDM microphone array library

TwoStageDecimator

template<unsigned MIC_COUNT, unsigned S2_DEC_FACTOR, unsigned
S2_TAP_COUNT>
class TwoStageDecimator

First and Second Stage Decimator.
This class template represents a two stage decimator which converts a stream of
PDM samples to a lower sample rate stream of PCM samples.
Concrete implementations of this class template are meant to be used as the
TDecimator template parameter in the MicArray class template.

Template Parameters

· MIC_COUNT – Number of microphone channels.
· S2_DEC_FACTOR – Stage 2 decimation factor.
· S2_TAP_COUNT – Stage 2 tap count.

Public Functions

void Init(const uint32_t *s1_filter_coef, const int32_t *s2_filter_coef, const
right_shift_t s2_filter_shr)

Initialize the decimator.
Sets the stage 1 and 2 filter coefficients. The decimator must be initialized
before any calls to ProcessBlock().
s1_filter_coef points to a block of coefficients for the first stage dec-
imator. This library provides coefficients for the first stage decimator; see
mic_array/etc/filters_default.h.
s2_filter_coef points to an array of coefficients for the second stage
decimator. This library provides coefficients for the second stage decima-
tor where the second stage decimation factor is 6; see mic_array/etc/
filters_default.h.
s2_filter_shr is the final right-shift applied to the stage 2 filter’s
accumulator prior to output. See lib_xcore_math’s documentation of
filter_fir_s32_t for more details.

Parameters

· s1_filter_coef – Stage 1 filter coefficients.This points to a block of coefficients for the first stage decima-
tor. This library provides coefficients for the first stage deci-
mator.See stage1_coef.

· s2_filter_coef – Stage 2 filter coefficients.This points to a block of coefficients for the second stage dec-
imator. This library provides coefficients for the second stage
decimator.See stage2_coef.

· s2_filter_shr – Stage 2 filter right-shift.This is the output shift used by the second stage decimator.See stage2_shr.
void ProcessBlock(int32_t sample_out[MIC_COUNT], uint32_t

pdm_block[BLOCK_SIZE])
Process one block of PDM data.
Processes a block of PDMdata to produce an output sample from the second
stage decimator.
pdm_block contains exactly enough PDM samples to produce a single out-
put sample from the second stage decimator. The layout of pdm_block
should (effectively) be:

46

https://github.com/xmos/lib_xcore_math

lib_mic_array: PDM microphone array library

struct {
struct {

// lower word indices are older samples.
// less significant bits in a word are older samples.
uint32_t samples[S2_DEC_FACTOR];

} microphone[MIC_COUNT]; // mic channels are in ascending order
} pdm_block;

A single output sample from the second stage decimator is computed and
written to sample_out[].

Parameters

· sample_out – Output sample vector.
· pdm_block – PDM data to be processed.

Public Members

unsigned DecimationFactor = S2_DEC_FACTOR
Stage 2 decimator decimation factor.

unsigned TapCount = S2_TAP_COUNT
Stage 2 decimator tap count.

const uint32_t *filter_coef
Pointer to filter coefficients for Stage 1

uint32_t pdm_history[MIC_COUNT][8]

Filter state (PDM history) for stage 1 filters.

filter_fir_s32_t filters[MIC_COUNT]
Stage 2 FIR filters

int32_t filter_state[MIC_COUNT][S2_TAP_COUNT] = {{0}}
Stage 2 filter stage.

Public Static Attributes

static constexpr unsigned BLOCK_SIZE = MIC_COUNT * S2_DEC_FACTOR
Size of a block of PDM data in words.

static constexpr unsigned MicCount = MIC_COUNT
Number of microphone channels.

static const struct mic_array::TwoStageDecimator::[anonymous] Stage2
Stage 2 decimator parameters

47

lib_mic_array: PDM microphone array library

SampleFilter

NopSampleFilter
template<unsigned MIC_COUNT>

class NopSampleFilter
SampleFilter which does nothing.
To be used as theTSampleFilter template parameter ofMicArraywhen no post-
decimation filtering is desired.
Calls to NopSampleFilter::Filter() are intended to be optimized out at com-
pile time.

Template Parameters
MIC_COUNT – Number of microphone channels.

Public Functions

inline void Filter(int32_t sample[MIC_COUNT])
Do nothing.

DcoeSampleFilter
template<unsigned MIC_COUNT>

class DcoeSampleFilter

Filter which applies DC Offset Elimination (DCOE).
To be used as the TSampleFilter template parameter of MicArray when DCOE
is desired as post-processing after the decimation filter.
The filter is a simple first-order IIR filter which applies the following filter equation:

R = 252.0 / 256.0
y[t] = R * y[t-1] + x[t] - x[t-1]

Template Parameters
MIC_COUNT – Number of microphone channels.

Public Functions

void Init()
Initialize the filter states.
The filter states must be initialized prior to calls to Filter().

void Filter(int32_t sample[MIC_COUNT])
Apply DCOE filter on samples.
sample is an array of samples to be filtered, and is updated in-place.
The filter statesmust have been initializedwith a call toInit() prior to calling
this function.

Parameters
sample – Samples to be filtered. Updated in-place.

48

lib_mic_array: PDM microphone array library

OutputHandler

An OutputHandler is a class which meets the requirements to be used as the
TOutputHandler template parameter of the MicArray class template. The basic re-
quirement is that it have a method:

This method is how the mic array communicates its output with the rest of the appli-
cation’s audio processing pipeline. MicArray calls this method once for each mic array
output sample.

See MicArray::OutputHandler for more details.

FrameOutputHandler
template<unsigned MIC_COUNT, unsigned SAMPLE_COUNT, template<unsigned,
unsigned> class FrameTransmitter, unsigned FRAME_COUNT = 1>
class FrameOutputHandler

OutputHandler implementation which groups samples into non-overlapping multi-
sample audio frames and sends entire frames to subsequent processing stages.
This class template can be used as an OutputHandler with theMicArray class tem-
plate. See MicArray::OutputHandler.
Classes derived from this template collect samples into frames. A frame is a 2
dimensional array with one index corresponding to the audio channel and the other
index corresponding to time step, e.g.:

int32_t frame[MIC_COUNT][SAMPLE_COUNT];

Each call to OutputSample() adds the sample to the current frame, and then iff the
frame is full, uses its FrameTx component to transfer the frame of audio to subse-
quent processing stages. Only one of every SAMPLE_COUNT calls to OutputSam-
ple() results in an actual transmission to subsequent stages.
With FrameOutputHandler, the thread receiving the audio will generally need to
knowhowmanymicrophone channels and howmany samples to expect per frame
(although, strictly speaking, that depends upon the chosen FrameTransmitter
implementation).

Template Parameters

· MIC_COUNT– The number of audio channels in each sample and
each frame.

· SAMPLE_COUNT – Number of samples per frame. The
SAMPLE_COUNT template parameter is the number of samples
assembled into each audio frame. Only completed frames are
transmitted to subsequent processing stages. ASAMPLE_COUNT
value of 1 effectively disables framing, transmitting one sample
for each call made to OutputSample.

· FrameTransmitter – The concrete type of the FrameTx com-
ponent of this class.Like many classes in this library, FrameOutputHandler uses the
Curiously Recurring Template Pattern.

· FRAME_COUNT – The number of frame buffers an instance of
FrameOutputHandler should cycle through. Unless audio
frames are communicated with subsequent processing stages
through shared memory, the default value of 1 is usualy ideal.

Public Functions

49

lib_mic_array: PDM microphone array library

inline FrameOutputHandler()
Construct new FrameOutputHandler.
The default no-argument constructor forFrameTransmitter is used to cre-
ate FrameTx.

inline FrameOutputHandler(FrameTransmitter<MIC_COUNT,
SAMPLE_COUNT> frame_tx)

Construct new FrameOutputHandler.
Uses the provided FrameTransmitter to send frames.

Parameters
frame_tx – Frame transmitter for sending frames.

void OutputSample(int32_t sample[MIC_COUNT])
Add new sample to current frame and output frame if filled.

Parameters
sample – Sample to be added to current frame.

Public Members

FrameTransmitter<MIC_COUNT, SAMPLE_COUNT> FrameTx
FrameTransmitter used to transmit frames to the next stage for process-
ing.
FrameTransmitter is the CRTP type template parameter used in this class
to control how frames of audio data are communicated with subsequent
pipeline stages.
The type supplied for FrameTransmitter must be a class template with
two integer template parameters, corresponding to this class’s MIC_COUNT
and SAMPLE_COUNT template parameters respectively, indicating the shape
of the frame object to be transmitted.
The FrameTransmitter type is required to implement a single method:

void OutputFrame(int32_t frame[MIC_COUNT][SAMPLE_COUNT]);

OutputFrame() is called once for each completed audio frame and is re-
sponsible for the details of how the frame’s data gets communicated to sub-
sequent stages. For example, the ChannelFrameTransmitter class template
uses an XCore channel to send samples to another thread (by value).
Alternative implementations might use shared memory or an RTOS queue to
transmit the framedata, ormight even use a port to signal the samples directly
to an external DAC.

ChannelFrameTransmitter
template<unsigned MIC_COUNT, unsigned SAMPLE_COUNT>

class ChannelFrameTransmitter
Frame transmitter which transmits frame over a channel.
This class template ismeant for use as the FrameTransmitter template param-
eter of FrameOutputHandler.
When using this frame transmitter, frames are transmitted over a channel using
the frame transfer API in mic_array/frame_transfer.h. Usually, a call to
ma_frame_rx() (with the other end of c_frame_out as argument) should be used
to receive the frame on another thread.
If the receiving thread is not waiting to receive the frame when OutputFrame() is
called, that method will block until the frame has been transmitted. In order to

50

lib_mic_array: PDM microphone array library

ensure there are no violations of the mic array’s real-time constraints, the receiver
should be ready to receive a frame as soon as it becomes available.

Frames can be transmitted between tiles using this class.

Note: WhileOutputFrame() is blocking, it will not prevent the PDM rx interrupt from
firing.

Template Parameters

· MIC_COUNT – Number of audio channels in each frame.
· SAMPLE_COUNT – Number of samples per frame.

Public Functions

inline ChannelFrameTransmitter()
Construct a ChannelFrameTransmitter.
If this constructor is used, SetChannel()must be called to configure the chan-
nel over which frames are transmitted prior to any calls to OutputFrame().

inline ChannelFrameTransmitter(chanend_t c_frame_out)
Construct a ChannelFrameTransmitter.
The supplied value of c_frame_outmust be a valid chanend.

Parameters
c_frame_out – Chanend over which frames will be transmit-
ted.

void SetChannel(chanend_t c_frame_out)
Set channel used for frame transfers.
The supplied value of c_frame_outmust be a valid chanend.

Parameters
c_frame_out – Chanend over which frames will be transmit-
ted.

chanend_t GetChannel()
Get the chanend used for frame transfers.

Returns
Channel to be used for frame transfers.

void OutputFrame(int32_t frame[MIC_COUNT][SAMPLE_COUNT])
Transmit the specified frame.
See ChannelFrameTransmitter for additional details.

Parameters
frame – Frame to be transmitted.

51

lib_mic_array: PDM microphone array library

Misc

template<unsigned MIC_COUNT>
void mic_array::deinterleave_pdm_samples(uint32_t *samples, unsigned

s2_dec_factor)
Deinterleave the channels of a block of PDM data.
PDM samples received on a port are shifted into a 32-bit buffer in such a way that
the samples for eachmicrophone channel are all interleaved with one another. The
first stage decimator, however, requires these to be separated.
samples must point to a buffer containing (MIC_COUNT*s2_dec_factor)
words of PDM data. Because the decimation factor for the first stage decimator is
a fixed value of 32, 32 PDM samples from each microphone is enough to produce
one output sample (a MIC_COUNT-element vector) from the first stage decima-
tor. 32*s2_dec_factor PDM samples for each of the MIC_COUNTmicrophone
channels is then exactly what is required to produce a single output sample from
the second stage decimator.
The PDM data will be deinterleaved in-place.

On input, the format of the buffer to which samples points is assumed to be such
that the following function will extract (only) the kth sample for microphone chan-
nel n (where k is a time index, not a memory index):

Input Format

unsigned get_sample(uint32_t* samples,
unsigned MIC_COUNT, unsigned s2_dec_factor,
unsigned n, unsigned k)

{
const end_word = MIC_COUNT * s2_dec_factor - 1; // chronologically first
const unsigned samp_per_word = 32 / MIC_COUNT;
const words_from_end = k / samp_per_word;
const uint32_t word_val = samples[end_word-words_from_end];
const unsigned bit_offset = (k % end_word) + n;
return (word_val >> bit_offset) & 1;

}

Here, thewords ofsamples are stored in reverse order (older samples are at higher
word indices), and within a word the oldest samples are the least significant bits.
The LSbof aword is alwaysmicrophone channel0, and theMSbof aword is always
microphone channel MIC_COUNT-1.

Upon return, the format of the buffer to which samples points will be such that the
following function will extract (only) the kth sample for microphone channel n:

Output Format

unsigned get_sample(uint32_t* samples,
unsigned MIC_COUNT, unsigned s2_dec_factor,
unsigned n, unsigned k)

{
const unsigned subblock = (s2_dec_factor-1)-(k/32);
const unsigned word_val = samples[subblock * MIC_COUNT + n];
return (word_val >> (k%32)) & 1;

}

Here, each word contains samples from only a single channel, with words at higher
addresses containing older samples. samples[0] contains the newest samples

52

lib_mic_array: PDM microphone array library

for microphone channel 0, and samples[MIC_COUNT-1] contains the newest
samples for microphone channel MIC_COUNT-1. samples[MIC_COUNT] con-
tains the next-oldest set of samples for channel 0, and so on.

Template Parameters
MIC_COUNT – Number of channels represented in PDM data.
One of {1,2,4,8}

Parameters

· samples – Pointer to block of PDM samples.
· s2_dec_factor – Stage2 decimator decimation factor.

9.2 C API Reference

filters_default.h

The filters described below are the first and second stage filters provided by this library
which are used with the TwoStageDecimator class template by default.

Stage 1 - PDM-to-PCM Decimating FIR Filter
Decimation Factor: 32
Tap Count: 256

The first stage decimation FIR filter converts 1-bit PDMsamples into 32-bit PCMsamples
and simultaneously decimates by a factor of 32.

A typical input PDM sample rate will be 3.072M samples/sec, thus the corresponding
output sample rate will be 96k samples/sec.

The first stage filter uses 16-bit coefficients for its taps. Because this is a highly op-
timized filter targeting the VPU hardware, the first stage filter is presently restricted to
using exactly 256 filter taps.

For more information about the example first stage filter supplied with the library, includ-
ing frequency response and steps for using a custom first stage filter, see Decimator
Stages.

STAGE1_DEC_FACTOR
Macro indicating Stage 1 Decimation Factor.
This is the ratio of input sample rate to output sample rate for the first filter stage.

Note: In version 5.0 of lib_mic_array, this value is fixed (even if you choose not to
use the default filter coefficients).

STAGE1_TAP_COUNT
Macro indicating Stage 1 Filter Tap Count.
This is the number of filter taps in the first stage filter.

Note: In version 5.0 of lib_mic_array, this value is fixed (even if you choose not to
use the default filter coefficients).

STAGE1_WORDS
Macro indicating Stage 1 Filter Word Count.

53

lib_mic_array: PDM microphone array library

This is a helper macro to indicate the number of 32-bit words required to store the
filter coefficients.

Note: Even though the coefficients are 16-bit, the related lib_mic_array structs and
functions expect them to be contained in an array of uint32_t, rather than an
array of int16_t. There are two reasons for this. The first is that the VPU instruc-
tions require loaded data to start at a word-aligned (0 mod 4) address. uint32_t
allocated on the heap or stack are guaranteed by the compiler to be at word-aligned
addresses. The second reason is to mitigate possible confusion regarding the ar-
rangement of the filter coefficients in memory. Not only are the 16-bit coefficients
not stored in order (e.g. b[0], b[1], b[2], ...), the bits of individual 16-bit
coefficients are not stored together in memory. This is, again, due to the behavior
of the VPU hardware.

const uint32_t stage1_coef[STAGE1_WORDS]
Stage 1 PDM-to-PCM Decimation Filter Default Coefficients.
These are the default coefficients for the first stage filter.

Stage 2 - PCM Decimating FIR Filter
Decimation Factor: (configurable)
Tap Count: (configurable)

The second stage decimation FIR filter filters and downsamples the 32-bit PCM output
stream from the first stage filter into another 32-bit PCM stream with sample rate re-
duced by the stage 2 decimation factor.

A typical first stage output sample rate will be 96k samples/sec, a decimation factor of 6
(i.e. using the default stage 2 filter) will mean a second stage output sample rate of 16k
samples/sec.

The second stage filter uses 32-bit coefficients for its taps. A complete description of
the FIR implementation is outside the scope of this documentation, but it can be found
in the `xs3_filter_fir_s32_t` documentation of lib_xcore_math.

In brief, the second stage filter coefficients are quantized to a Q1.30 fixed-point format
with input samples treated as integers. The tap outputs are added into a 40-bit accumula-
tor, and an output sample is produced by applying a rounding arithmetic right-shift to the
accumulator and then clipping the result to the interval [INT32_MAX, INT32_MIN).

For more information about the example second stage filter supplies with the library,
including frequency response and steps for using a custom filter, see Decimator Stages.

STAGE2_DEC_FACTOR
Stage 2 Decimation Factor for default filter.
This is the ratio of input sample rate to output sample rate for the second filter
stage.
While the second stage filter can be configured with a different decimation factor,
this is the one used for the filter supplied with this library.

STAGE2_TAP_COUNT
Stage 2 Filter tap count for default filter.

54

lib_mic_array: PDM microphone array library

This is the number of filter taps associated with the second stage filter supplied
with this library.

const int32_t stage2_coef[STAGE2_TAP_COUNT]
Stage 2 Decimation Filter Default Coefficients.
These are the default coefficients for the second stage filter.

const right_shift_t stage2_shr
Stage 2 Decimation Filter Default Output Shift.
This is the non-negative, rounding, arithmetic right-shift applied to the 40-bit accu-
mulator to produce an output sample.

pdm_resources.h

struct pdm_rx_resources_t
Collection of resources IDs required for PDM capture.
This struct is a container for the IDs of the XCore hardware resources used by the
mic array unit’s PdmRx component for capturing PDM data from a port.
An object of this type will be used for initializing and starting the mic array unit.

Public Members

port_t p_mclk
Resource ID of the 1-bit port on which the master audio clock signal is re-
ceived.
The master audio clock will be divided by a clock block to produce the PDM
sample clock.
This port will be configured as an input.

port_t p_pdm_clk
Resource ID of the 1-bit port through which the PDM sample clock is signaled.
The PDM sample clock is used by the PDM microphones to trigger sample
conversion.
This port will be configured as an output.

port_t p_pdm_mics
Resource ID of the port on which PDM samples are received.
In an SDR configuration, the number of microphone channels is the width of
this port. In a DDR configuration, the number ofmicrophone channels is twice
the width of this port.
This port will be configured as an input.

clock_t clock_a
Resource ID of the clock block used to derive the PDM clock from the master
audio clock.
In SDR configurations this is also the PDM data capture clock.

clock_t clock_b
Resource ID of the clock block used only in DDRconfigurations to trigger reads
of the PDM data.

55

lib_mic_array: PDM microphone array library

If operating in an SDR configuration, clock_b is 0. A value of 0 is what indi-
cates an SDR configuration is being used.

PDM_RX_RESOURCES_SDR(P_MCLK, P_PDM_CLK, P_PDM_MICS, CLOCK_A)
Construct a pdm_rx_resources_t for an SDR configuration.
pdm_rx_resources_t.clock_b is initialized to 0, indicating an SDR configura-
tion.

Parameters

· P_MCLK – Master audio clock port resource ID.
· P_PDM_CLK – PDM sample clock port resource ID.
· P_PDM_MICS – PDMmicrophone data port resource ID.
· CLOCK_A – PDM clock and capture clock block resource ID.

PDM_RX_RESOURCES_DDR(P_MCLK, P_PDM_CLK, P_PDM_MICS, CLOCK_A,
CLOCK_B)

Construct a pdm_rx_resources_t for a DDR configuration.

Parameters

· P_MCLK – Master audio clock port resource ID.
· P_PDM_CLK – PDM sample clock port resource ID.
· P_PDM_MICS – PDMmicrophone data port resource ID.
· CLOCK_A – PDM clock clock block resource ID.
· CLOCK_B – PDM capture clock block resource ID.

setup.h

void mic_array_resources_configure(pdm_rx_resources_t *pdm_res, int
divide)

Configure the hardware resources needed by the mic array.
Several hardware resources are needed to correctly run the mic array, including 3
ports and 1 or 2 clock blocks (depending on whether SDR or DDR mode is used).
This function configures these resources for operation with the mic array.
The pdm_rx_resources_t struct is a container for identifying precisely these
resources. All three ports are reset by this function; any existing port configuration
will be clobbered.
The parameter divide is the ratio of the audio master clock to the desired PDM
clock rate. For example, to generate a desired 3.072 MHz PDM clock from an
audio master clock with frequency 24.576 MHz, a divide value of 8 is needed.
Divide can also be calculated from the master and PDM clock frequencies using
mic_array_mclk_divider().
pdm_res->p_mclk is the resource ID for the 1-bit port on which the audio master
clock is received. This function will enable this port and configure it as the source
port for pdm_res->clock_a and for pdm_res->clock_b if operating in a DDR
configuration.
pdm_res->clock_a is the resource ID for the first (in SDR configuration, the only)
clock block required by the mic array. Clock A divides the audio master clock (by
a factor of divide) to generate the PDM clock. This function enables it with the
audio master clock as its source.
pdm_res->p_pdm_clk is the resource ID for the 1-bit port from which the PDM
clock will be signaled to the microphones. This function enables it and configures
Clock A as its source clock.
pdm_res->clock_b is the resource ID for a second clock block, which is only re-
quired by the mic array in a DDR configuration. In DDRmode, this function enables

56

lib_mic_array: PDM microphone array library

Clock B with the audio master clock as its source. The divider for Clock B is half of
that for Clock A (so it runs at twice the frequency). In a DDR configuration Clock B
is used as the PDM capture clock. In an SDR configuration, this field must be set
to 0 (this is how SDR/DDR is determined).
pdm_res->p_pdm_mics is the resource ID for the port on which PDM data is
received. This function enables it and configures it as a 32-bit buffered input. If
operating in an SDR configuration, Clock A is used as the capture clock. If operating
in a DDR configuration, Clock B is used as its capture clock.
This function only configures and does not start either Clock A or Clock B. A call to
mic_array_pdm_clock_start()with pdm_res as the argument can be used
to start the clock(s).
This function should be called during initialization, before any PDM data can be
captured or processed.

Parameters

· pdm_res – The hardware resources used by the mic array.
· divide– The divider to generate the PDM clock from themaster

clock.

void mic_array_pdm_clock_start(pdm_rx_resources_t *pdm_res)
Start the PDM and capture clock(s).
This function starts Clock A, and if using a DDR configuration, Clock B.
mic_array_resources_configure()must have been called already to con-
figure the resources indicated in pdm_res.
Clock A is the PDM clock. Starting Clock A will cause pdm_res->p_pdm_clk to
begin strobing the PDM clock to the PDMmicrophones.
In an SDR configuration, Clock A is also the capture clock. In a DDR configura-
tion, Clock B is the capture clock. In either case, the capture clock is also started,
causingpdm_res->p_pdm_mics to begin storing PDMsamples received on each
period of the capture clock.
In DDR configuration, this function starts Clock B, waits for a rising edge, and then
starts Clock A, ensuring that the rising edges of the two clocks are not in phase.
This function must be called prior to launching the decimator or PDM rx threads.

Warning: Once this function has been called, the port receiving PDM data will
begin capturing samples. If the mic array unit is not started by the time the port
buffer fills ((32/mic_count) sample times) samples will begin to be dropped.

Parameters

· pdm_res – The hardware resources used by the mic array.

static inline unsigned mic_array_mclk_divider(const unsigned
master_clock_freq, const
unsigned pdm_clock_freq)

Compute clock divider for PDM clock.
This is a convenience function which computes the required clock divider to de-
rive a pdm_clock_freq Hz clock from a master_clock_freq Hz clock. This
function is simple integer division.

Parameters

57

lib_mic_array: PDM microphone array library

· master_clock_freq – The master audio clock frequency in
Hz.

· pdm_clock_freq – The desired PDM clock frequency in Hz.
Returns

Required clock divider.

frame_transfer.h

void ma_frame_tx(const chanend_t c_frame_out, const int32_t frame[], const
unsigned channel_count, const unsigned sample_count)

Transmit 32-bit PCM frame over a channel.
This function transmits the 32-bit PCM frame frame[] over the channel
c_frame_out.
This is a blocking call which will wait for a receiver to accept the data from the
channel. Typically this will be accomplished with a call to ma_frame_rx() or
ma_frame_rx_transpose().
The receiver is not required to be on the same tile as the sender.

Note: Internally, a channel transaction is established to reduce the overhead of
channel communication. Any custom functions are used to receive this frame in
an application, they must wrap the channel reads in a (slave) channel transaction.
See xcore/channel_transaction.h.

Warning: No protocol is used to ensure consistency between the frame layout
of the transmitter and receiver. Disagreement about frame size will likely cause
one side to block indefinitely. It is the responsibility of the application author to
ensure consistency between transmitter and receiver.

Parameters

· c_frame_out – Channel over which to send frame.
· frame – Frame to be transmitted.
· channel_count – Number of channels represented in the

frame.
· sample_count – Number of samples represented in the frame.

void ma_frame_rx(int32_t frame[], const chanend_t c_frame_in, const unsigned
channel_count, const unsigned sample_count)

Receive 32-bit PCM frame over a channel.
This function receives a PCM frame over c_frame_in. Normally, the frame will
have been transmitted using ma_frame_tx(). The received frame is stored in
frame[].
This is a blocking call which does not return until the frame has been fully received.
The sender is not required to be on the same tile as the receiver.

Note: Internally, a channel transaction is established to reduce the overhead of
channel communication. This function may only be used to receive the frame if
the transmitter has wrapped the channel writes in a (master) channel transaction.
See xcore/channel_transaction.h.

58

lib_mic_array: PDM microphone array library

Warning: No protocol is used to ensure consistency between the frame layout
of the transmitter and receiver. Disagreement about frame size will likely cause
one side to block indefinitely. It is the responsibility of the application author to
ensure consistency between transmitter and receiver.

Parameters

· frame – Buffer to store received frame.
· c_frame_in – Channel from which to receive frame.
· channel_count – Number of channels represented in the

frame.
· sample_count – Number of samples represented in the frame.

void ma_frame_rx_transpose(int32_t frame[], const chanend_t c_frame_in, const
unsigned channel_count, const unsigned
sample_count)

Receive 32-bit PCM frame over a channel with transposed dimensions.
This function receives a PCM frame over c_frame_in. Normally, the frame will
have been transmitted using ma_frame_tx(). The received frame is stored in
frame[].
Unlike ma_frame_rx(), this function reorders the frame elements as they are
received. ma_frame_tx() always transmits the frame elements in memory or-
der. This function swaps the channel and sample axes so that if the transmitter
frame has shape (CHANNEL, SAMPLE), the caller’s frame array will have shape
(SAMPLE, CHANNEL).
This is a blocking call which does not return until the frame has been fully received.
The sender is not required to be on the same tile as the receiver.

Note: Internally, a channel transaction is established to reduce the overhead of
channel communication. This function may only be used to receive the frame if
the transmitter has wrapped the channel writes in a (master) channel transaction.
See xcore/channel_transaction.h.

Warning: No protocol is used to ensure consistency between the frame layout
of the transmitter and receiver. Disagreement about frame size will likely cause
one side to block indefinitely. It is the responsibility of the application author to
ensure consistency between transmitter and receiver.

Parameters

· frame – Buffer to store received frame.
· c_frame_in – Channel from which to receive frame.
· channel_count – Number of channels represented in the

frame.
· sample_count – Number of samples represented in the frame.

dc_elimination.h

struct dcoe_chan_state_t

59

lib_mic_array: PDM microphone array library

DC Offset Elimination (DCOE) State.
This is the required state information for a single channel to which the DC offset
elimination filter is to be applied.
To apply the DC offset elimination filter to multiple channels simultaneously, an
array of dcoe_chan_state_t should be used.
dcoe_state_init() is used once to initialize an array of state objects, and
dcoe_filter() is used on each consecutive sample to apply the filter and get
the resulting output sample.
DC offset elimination is an IIR filter. The state must persist between time steps.

Use in lib_mic_array

Typical users of lib_mic_array will not need to directly use this type or any
functions which take it as a parameter.
The C++ class template mic_array::DcoeSampleFilter, if used in an ap-
plication’s mic array unit, will allocate, initialize and apply the DCOE filter au-
tomatically.

With MicArray Prefabs
The MicArray prefab mic_array::prefab::BasicMicArray has
a bool template parameter USE_DCOE which indicates whether the
mic_array::DcoeSampleFilter should be used. If true, DCOE will be
enabled.

With Vanilla API
When using the ‘vanilla’ API, DCOE is enabled by default. To disable DCOE
when using this API, add a preprocessor definition to the compiler flags, set-
ting MIC_ARRAY_CONFIG_USE_DC_ELIMINATION to 0.

Public Members

int64_t prev_y
Previous output sample value.

void dcoe_state_init(dcoe_chan_state_t state[], const unsigned chan_count)
Initialize DCOE states.
The DC offset elimination state needs to be intialized before the filter can be ap-
plied. This function initializes it.
For correct behavior, the state vector statemust persist between audio samples
and is supplied with each call to dcoe_filter().

Parameters

· state – [in] Array of dcoe_chan_state_t to be initialized.
· chan_count – [in] Number of elements in state.

void dcoe_filter(int32_t new_output[], dcoe_chan_state_t state[], int32_t
new_input[], const unsigned chan_count)

60

lib_mic_array: PDM microphone array library

Apply DCOE filter.
Applies the DC offset elimination filter to get a new output sample and updates the
filter state.
For correct behavior, this function should be called once per sample (here “sample”
refers to a vector-valued quantity containing one element for each audio channel)
of that stream.
The index of each array (state, new_input and new_output) corresponds to
the audio channel. The update associated with each audio channel is independent
of each other audio channel.
The equation used for each channel is:

y[t] = R * y[t-1] + x[t] - x[t-1]

where t is the current sample time index, y[] is the output signal, x[] is the input
signal, and R is (252.0/256).
To filter a sample in-place use the same array for both the new_input and
new_output arguments.

Parameters

· new_output – [out] Array into which the output sample will be
placed.

· state – [in] DC offset elimination state vector.
· new_input – [in] New input sample.
· chan_count – [in] Number of channels to be processed.

util.h

void deinterleave2(uint32_t*)
Perform deinterleaving for a 2-microphone subblock.
Assembly function.
Deinterleave the samples for 1 subblock of 2 microphones. Argument points to a
2 word buffer.

void deinterleave4(uint32_t*)
Perform deinterleaving for a 4-microphone subblock.
Assembly function.
Deinterleave the samples for 1 subblock of 4 microphones. Argument points to a
4 word buffer.

void deinterleave8(uint32_t*)
Perform deinterleaving for a 8-microphone subblock.
Assembly function.
Deinterleave the samples for 1 subblock of 8 microphones. Argument points to a
8 word buffer.

void deinterleave16(uint32_t*)
Perform deinterleaving for a 16-microphone subblock.
Assembly function.
Deinterleave the samples for 1 subblock of 16 microphones. Argument points to a
16 word buffer.

61

lib_mic_array: PDM microphone array library

mic_array_vanilla.h

void ma_vanilla_init()
Initializes the mic array module. (Vanilla API only)
Initializes the contexts for the decimator thread and configures the clocks and
ports for PDM reception.
After calling this, the PDMclock is active and signaling, but the PDM rx service (ISR)
has not yet been activated, so received PDM samples are ignored. The real-time
condition is not yet active.

Parameters

· pdm_res – Hardware resources required by the mic array mod-
ule.

void ma_vanilla_task(chanend_t c_frames_out)
Entry point for decimator thread and PDM rx. (Vanilla API only)
This function sets up and activates the PDM rx service in ISR mode, and then im-
mediately begins executing the decimator.
After calling this the real-time condition is active, meaning there must be another
thread waiting to pull frames from the other end of c_frames_out as they be-
come available.

Parameters

· c_frames_out – (Non-streaming) Channel over which to send
processed frames of audio.

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

62

	Introduction
	Overview
	Capabilities
	High-Level Process View

	Getting Started
	Identify Resources
	Vanilla Model
	Prefab Model

	Decimator Stages
	Decimator Stage 1
	Decimator Stage 2
	Custom Filters

	Sample Filters
	DC Offset Elimination

	Software Structure
	High-Level View
	Sub-Components

	Mic Array Resource Usage
	Discrete Resources
	Compute
	Memory

	Vanilla API
	How It Works
	Configuration

	API Reference
	C++ API Reference
	C API Reference

