an00162: Implementing an 12S loopback using the lib_i2s library

2 MOS

an00162: Implementing an I12S loopback using the lib_i2s library

Publication Date: 2025/3/19
Document Number: XM-010239-AN v2.0.1

IN THIS DOCUMENT

1 Introduction 1
2 Blockdiagram 1
3 I2Sloopbackdemo 2
4 Building the application 5
5 Demo hardwaresetup 5
6 Running the demo application 5
7 References 5
8 Full source codelisting 6

1 Introduction

The XMOS 12S library provides software defined, industry-standard, I?S (Integrated Inter-
chip Sound) components that allows you to stream audio between devices using xCORE

GPIO ports.

12Sis a specific type of PCM digital audio communication using a serial clock (sometimes

refered as bit clock) line, word clock line and at least one multiplexed data line.

The library includes features such as 1S master (newly termed controller), 1°S slave
(newly termed target), and TDM master components. This application note uses the
library to create an 1>S master digital loopback.

2 Block diagram

Tile[0]

12C master
server task

Tile[1]

12S task
and

i2s_loopback

Fig. 1: Application block diagram

The main application fits within one thread with a remote 12C task to configure the audio
hardware remotely from the other tile. The 1ib_board_support library, whichincludes

12C, takes care of the audio hardware setup.

The I?S task calls back to the i2s_loopback task, and the processing in the

i2s_loopback task occurs in-between the 1/0 operations of I1°S.

an00162: Implementing an 12S loopback using the lib_i2s library

3 IS loopback demo

3.1 The CMakelLists.txt file

XMOS applications use the xcommon-cmake build and dependency management sys-
tem. This is bundled with the XMOS XTC tools.

To start using the 1°S, include 1ib_i2s as a dependent module in the application’s
CMakelLists.txt file:

set (APP_DEPENDENT_MODULES "lib_i2s")

This demo also uses the 12C library (1ib_i2c) which 1lib_board_support in-

cludes as a dependent module. The application uses °C to configure the audio
CODECs. Consequently, the application’s CMakelLists.txt includes both 1ib_i2s and
lib_board_support as dependent modules.

set(APP_DEPENDENT_MODULES "1ib_board_support(1.1.1)"
"1ib_i2s(6.6.1)")

3.2 Includes
All xC files which declare the applicationmain () function needtoinclude platform.h.
XMOS xcore specific defines for declaring and initialising hardware appear in xs1.h.

#include <platform.h>
#include <xs1.h>

The i2s. h file defines the I2S library functions. This header must be included to use the
library.

#include "i2s.h"
#include "xk_audio_3716_mc_ab/board.h"

The other include gives access to the the board setup code.
3.3 Allocating hardware resources
An12S interface requires both clock and data pins in order to communicate with the audio

CODEC device. On an xcore the pins are controlled by ports.

The ports used by the I?S library are declared on the tile on which they reside. Their
declarationincludes each port’s direction and buffered nature. This loopback application
uses four 1-bit ports for input and four more for output.

on tile[1]: in port p_mclk = PORT_MCLK_IN;

on tile[1]: buffered out port:32 p_lrclk = PORT_I2S_LRCLK;

on tile[1]: out port p_bclk = PORT_I2S_BCLK;

on tile[1]: buffered out port:32 p_dac[NUM_I2S_LINES] = {PORT_I2S_DACO, PORT_I2S_DAC1, PORT_I2S_DAC2, PORT_
<+I2S_DAC3};

on tile[1]: buffered in port:32 p_adc[NUM_I2S_LINES] = {PORT_I2S_ADCO ,PORT_I2S_ADC1, PORT_I2S_ADC2, PORT_
< I2S_ADC3};

The xcore also provides clock block hardware to efficiently generate a clock signal
that can either be driven out of a port or used to control a port. This application uses one
clock block.

on tile[1]: clock bclk = XS1_CLKBLK_1;

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

an00162: Implementing an 12S loopback using the lib_i2s library

3.4 The application main () function

The main() function in the program sets up the tasks in the application.

Firstly, it declares interfaces. An xC interface provides a means for concurrent tasks
to communicate with each other. This application includes an interface for the 1°S master
and an interface for the I1?C master.

interface i2s_frame_callback_if i_i2s;
interface i2c_master_if i_i2c[1]; // Cross tile interface

Therest of themain () function starts all the tasks in parallel using the xC par construct:

par {
on tile[0]: {
xk_audio_316_mc_ab_board_setup(hw_config); // Setup must be done on tile[@]
xk_audio_316_mc_ab_i2c_master(i_i2c); // Run I2C master server task to allow control from
—>tile[1]
}

on tile[1]: {
interface i2s_frame_callback_if i_i2s;

par {
// The application - loopback the I2S samples - note callbacks are inlined so does not take a
<thread
[[distribute]] i2s_loopback(i_i2s, i_i2c[0]);
i2s_frame_master(i_i2s, p_dac, NUM_I2S_LINES, p_adc, NUM_I2S_LINES, DATA_BITS, p_bclk, p_lrclk,
«p_mclk, bclk);
}

}
¥

This code starts the 12S master, the I2C master, the board setup logic, and the loopback
application.

The call to the i2s_loopback task in the par is marked with the [[distribute]]
attribute, and the corresponding i2s_loopback() function is marked with the
[[distributable]] attribute. These attributes mean that the i2s_loopback task
will run on an existing logical core if possible rather than creating a new one. In this case
it will share the logical core used by the 12S master.

3.5 Configuring audio CODECs

All of the audio hardware is setup using functions in 1ib_board_support. The previ-
ous inclusion of board. h from the xk_audio_316_mc_ab directory targets the hard-
ware setup to the XU316 Multichannel Audio board (XK-AUDIO-316-MC). These lines

perform some board-specific initialisation and start the I°C task.

xk_audio_316_mc_ab_board_setup(hw_config); // Setup must be done on tile[@]

The hw_config struct specifies the hardware configuration. In this case, it sets up the
xcore to be an 12S master with the following settings:

#define SAMPLE_FREQUENCY 48000
#define MASTER_CLOCK_FREQUENCY 24576000
#define DATA_BITS 32
#define CHANS_PER_FRAME 2
#define NUM_I2S_LINES 4

The following functions, called from the i2s_loopback task, complete the initialisation
and configuration of the ADCs and DACs:
xk_audio_316_mc_ab_AudioHwInit(i_i2c, hw_config);

xk_audio_316_mc_ab_AudioHwConfig(i_i2c, hw_config, SAMPLE_FREQUENCY, MASTER_CLOCK_FREQUENCY, ©, DATA_BITS, DATA_
<»BITS);

For full documentation of the 1ib_board_support API, please refer to the following
link: lib_board_support.

https://www.xmos.com/file/lib_board_support/

an00162: Implementing an 12S loopback using the lib_i2s library

3.6 The i2s_loopback application

The I2S loopback task provides the function of a digital loopback so that all 1S samples
received by the device will be forwarded on.

The task itself is declared as a [[distributable]] function allowing it to share a
logical core with other tasks. This xC feature can be enabled for any task with the form:

while(1) {
select {

)
}

The function takes a number of arguments:

[[distributable]]
void i2s_loopback(server i2s_frame_callback_if i_i2s, client i2c_master_if i_i2c)

The interface to the I1°S master, server i2s_frame_callback_if i_i2s, provides
a set of callback functions. The 1S master will call these functions as needed.

The i2s_loopback task uses the [°C master interface, client i2c_master_if
i_1i2c, to configure the CODECs (ADCs and DACs) remotely.

The main loop in the 12s_loopback task handles the I?S interface calls.

while (1) {
select {
case i_i2s.init(i2s_config_t &?i2s_config, tdm_config_t &?tdm_config):
i2s_config.mode = I2S_MODE_I2S;
i2s_config.mclk_bclk_ratio = (MASTER_CLOCK_FREQUENCY / (SAMPLE_FREQUENCY * CHANS_PER_FRAME * DATA_
<BITS));
xk_audio_316_mc_ab_AudioHwConfig(i_i2c, hw_config, SAMPLE_FREQUENCY, MASTER_CLOCK_FREQUENCY, @, DATA_
<+BITS, DATA_BITS);
break;

case i_i2s.receive(size_t n_chans, int32_t in_samps[n_chans]):
for (int i = @; i < n_chans; i++){
samples[i] = in_samps[i]; // copy samples
break;

case i_i2s.send(size_t n_chans, int32_t out_samps[n_chans]):
for (int i = @; i < n_chans; i++){
out_samps[i] = samples[i]; // copy samples
}
break;

case i_i2s.restart_check() -> i2s_restart_t restart:
restart = I2S_NO_RESTART; // Keep on looping
break;
} // End select
} // End while (1)

The 1S master library calls the init () method before it starts any data streaming. This
call allows the application to reset and configure the audio CODECs, for example when
the sample rate changes.

The receive() interface method is called when the master has received a frame of
audio samples (all channels in one sample period). The receive() method stores the
samples in the samples array.

The I2S master calls the send () interface method when it needs a new frame of samples
to send. In this case the application simply returns the frame of samples previously
received.

Finally, the restart_check() method is called by the I>S master once per frame. It

allows the application to control restart or shutdown of the 1S master. In this case the
application continues to run forever and so always returns I2S_NO_RESTART.

an00162: Implementing an 12S loopback using the lib_i2s library

4 Building the application

The following section assumes you have downloaded and installed the XMOS XTC tools.
See the README file for required version. Installation instructions can be found here. Be
sure to pay attention to the section Installation of required third-party tools.

The application uses the xcommon-cmake build system as bundled with the XTC tools.

The ANBB162_i2s_loopback_demo software zip-file should be downloaded and un-
zipped to a chosen directory.

To configure the build, run the following from an XTC command prompt:

cd an@e162
cd app_an00162
cmake -G "Unix Makefiles" -B build

All required dependencies are included in the software download. However, if any are
missing, they will be downloaded by the build system.
Finally, the application binaries can be built using xmake:

xmake -j -C build

The application uses approximately 3 kiB on Tile[0] and 7 kiB on Tile[1] (each tile has 512
kiB available).

5 Demo hardware setup

Please refer to the XU316 Multichannel Audio board hardware platform documentation.
The demo is designed to run on the XU316 Multichannel Audio board. To run the demo:
» Connect a USB cable from your host to the DEBUG connector.

» Connect a USB cable from your host to the USB DEVICE connector.

» Connect a sound source to the 3.5mm line in. Channels 1-2, 3-4, 5-6 or 7-8 can be
used.

» Connect headphones or speakers to the corresponding line out.

6 Running the demo application

To run the application return to the app_an80162 directory and run the following com-
mand:

xrun bin/app_an@0162.xe

You should hear the audio connected to the analog input jacks looped back to the output
jacks.

7 References
» XMOS Tools User Guide

https://www.xmos.com/documentation/XM-014363-PC-9/html/

» XMOS xcore Programming Guide
https://www.xmos.com/published/xmos-programming-guide

» XMOS Libraries
https://www.xmos.com/libraries/

» 123 Protocol
https://en.wikipedia.org/wiki/|%C2%B2S

https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://www.xmos.com/download/XCORE_AI-Multichannel-Audio-Platform-1V1-Hardware-Manual(1V1).pdf
https://www.xmos.com/documentation/XM-014363-PC-9/html/
https://www.xmos.com/published/xmos-programming-guide
https://www.xmos.com/libraries/
https://en.wikipedia.org/wiki/I%C2%B2S

an00162: Implementing an 12S loopback using the lib_i2s library

8 Full source code listing

8.1 Source code for main.xc

// Copyr
// This

#include
#include
#include
#include

#define
#define
#define
#define
#define

// 128 r
on tile[
on tile[
on tile[
on tile[
~—I2S_DAI
on tile[

ight 2014-2024 XMOS LIMITED.
Software is subject to the terms of the XMOS Public Licence: Version 1.

<platform.h>

<xs1.h>

"i2s.h"
"xk_audio_316_mc_ab/board.h"

SAMPLE_FREQUENCY 48000
MASTER_CLOCK_FREQUENCY 245760600
DATA_BITS 32
CHANS_PER_FRAME 2
NUM_I2S_LINES 4

esources
1]: in port p_mclk = PORT_MCLK_IN;

1 buffered out port:32 p_lrclk = PORT_I2S_LRCLK;

1]: out port p_bclk = PORT_I2S_BCLK;

1]: buffered out port:32 p_dac[NUM_I2S_LINES] = {PORT_I2S_DACO, PORT_I2S_DAC1, PORT_I2S_DAC2, PORT_
C3};

1]: buffered in port:32 p_adc[NUM_I2S_LINES] = {PORT_I2S_ADCO ,PORT_I2S_ADC1, PORT_I2S_ADC2, PORT_

<+I2S_ADC3};

on tile[

// Board

1]: clock bclk = XS1_CLKBLK_1;

configuration from lib_board_support

static const xk_audio_316_mc_ab_config_t hw_config = {

CLK_FIXED, // clk_mode. Drive a fixed MCLK output
0, // 1 = dac_is_clock_master
MASTER_CLOCK_FREQUENCY,

) // pll_sync_freq (unused when driving fixed clock)
AUD_316_PCM_FORMAT_I2S,
DATA_BITS,
CHANS_PER_FRAME

I
[[distributable]]
void i2s_loopback(server i2s_frame_callback_if i_i2s, client i2c_master_if i_i2c)
{
int32_t samples[NUM_I2S_LINES * CHANS_PER_FRAME] = {@}; // Array used for looping back samples
// Config can be done remotely via i_i2c
xk_audio_316_mc_ab_AudioHwInit(i_i2c, hw_config);
while (1) {
select {
case i_i2s.init(i2s_config_t &?i2s_config, tdm_config_t &?tdm_config):
i2s_config.mode = I2S_MODE_I2S;
i2s_config.mclk_bclk_ratio = (MASTER_CLOCK_FREQUENCY / (SAMPLE_FREQUENCY * CHANS_PER_FRAME * DATA_
<»BITS));
xk_audio_316_mc_ab_AudioHwConfig(i_i2c, hw_config, SAMPLE_FREQUENCY, MASTER_CLOCK_FREQUENCY, @, DATA_
<+BITS, DATA_BITS);
break;

case i_i2s.receive(size_t n_chans, int32_t in_samps[n_chans]):
for (int i = @; i < n_chans; i++){
samples[i] = in_samps[i]; // copy samples

break;

case i_i2s.send(size_t n_chans, int32_t out_samps[n_chans]):
for (int i = @; i < n_chans; i++){
out_samps[i] = samples[i]; // copy samples

break;

case i_i2s.restart_check() -> i2s_restart_t restart:
restart = I2S_NO_RESTART; // Keep on looping
break;

} // End select

} // End while (1)
} // End i2s_loopback

int main(void)

interface i2c_master_if i_i2c[1]; // Cross tile interface

par

{

on tile[@]: {
xk_audio_316_mc_ab_board_setup(hw_config); // Setup must be done on tile[@]
xk_audio_316_mc_ab_i2c_master(i_i2c); // Run I2C master server task to allow control from

—»tile[1]
}

on tile[1]: {
interface i2s_frame_callback_if i_i2s;

(continues on next page)

4

an00162: Implementing an 12S loopback using the lib_i2s library

(continued from previous page)
par {
// The application - loopback the I2S samples - note callbacks are inlined so does not take a

< thread
[[distribute]] i2s_loopback(i_i2s, i_i2c[@]);
i2s_frame_master(i_i2s, p_dac, NUM_I2S_LINES, p_adc, NUM_I2S_LINES, DATA_BITS, p_bclk, p_lrclk,

<p_mclk, bclk);
}
}

return 0;

an00162: Implementing an 12S loopback using the lib_i2s library

»MOS

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information”) and is providing
it to you "AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

8 Y,

	Introduction
	Block diagram
	I2S loopback demo
	Building the application
	Demo hardware setup
	Running the demo application
	References
	Full source code listing

