
lib_xtcp: TCP/IP library

Publication Date: 2025/7/17
Document Number: XM-007217-UG v6.2.0

lib_xtcp: TCP/IP library

IN THIS DOCUMENT

1 Introduction . 2
1.1 Terms . 2

2 Overview . 3
2.1 IP Configuration . 4
2.2 Events and Connections . 4
2.3 New Connections . 5
2.4 TCP and UDP . 5
2.5 Receiving Data . 5
2.6 Sending Data . 5
2.7 Link Status Events . 6
2.8 Server Configuration . 6
2.9 Stack Configuration . 6

3 Usage . 7
3.1 Using lib_xtcp . 7
3.2 Stack Selection . 7
3.3 Getting Started . 7

4 Configuration API . 9
4.1 Configuration Defines . 9

5 Functional API . 10
5.1 Data Structures/Types . 10
5.2 Event types . 11
5.3 Server API . 13
5.4 Client API . 15

1 Introduction

This document details the XMOS TCP library lib_xtcp which allows use of TCP and
UDP traffic over Ethernet.

The following sections of the document describe the general usage and behaviour of
the library, followed by a detailed usage with an example application and then detailed
descriptions of the APIs.

This document assumes familiarity with the XMOS xcore architecture, Ethernet, and
TCP/IP along with the XMOS XTC toolchain and the XC language.

lib_xtcp is intended to be used with the XCommon CMake , the XMOS application
build and dependency management system.

This library is for use with xcore-200 series (XS2 architecture) or xcore.ai series (XS3
architecture) devices, previous generations of xcore devices (i.e. XS1 architecture) are
supported, but all examples and app-notes target newer devices.

1.1 Terms

The terms used in this document can appear confusing as client and server can both be
used in two different ways. Firstly, for the an XC interface there are clients and servers,
see Client API as an example. The client being application and the server being the
lib_xtcp stack. This usage is commonly used throughout this document. Secondly,
there are TCP/IP clients and servers, these are referred to as a local host or remote host,
or in context such as DHCP server or HTTP server.

2

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_xtcp: TCP/IP library

2 Overview

The TCP/IP library provides OSI layer 3 and 4 features. Client applications built on
lib_xtcp can provide layers 5-7 features as needed, such as the HTTP example pro-
vided in the library’s example app_simple_webserver, see Getting Started section.

Table 1: lib_xtcp and the OSI Layer Model

OSI Layers Addressing xcore libraries

Application e.g. HTTP/URL (lib_xtcp client) app_simple_webserver
Presentation application specific lib_xtcp client application
Session application specific lib_xtcp client application
Transport Port lib_xtcp
Network IP lib_xtcp
Data link MAC lib_ethernet (MAC)
Physical PHY lib_ethernet (PHY)

The TCP/IP stack runs in a task implemented in either the xtcp_uip() or
xtcp_lwip() functions depending on which stack implementation is preferred. The
interface to the stack are the same, regardless of which implementation is being used.

This task connects to either the RMII/RGMII MAC components or the MII component in
the Ethernet library lib_etherent. See the figures XTCP task diagram and XTCP task
diagram (MII) and the Ethernet library user guide for details on these components.

Fig. 1: XTCP task diagram

Or direct to the MII component,

Fig. 2: XTCP task diagram (MII)

Clients can interact with the TCP/IP stack via interfaces connected to the component
using the interface functions described in Client API.

If the application has no need to direct layer 2 traffic to the Ethernet MAC then the most
resource efficient approach is to connect the xtcp component directly to the MII layer
component.

3

lib_xtcp: TCP/IP library

2.1 IP Configuration

The library server will determine its IP configuration based on the xtcp_ipconfig_t
configuration passed into the xtcp_uip() / xtcp_lwip() task (see section Server
API). If an address is supplied then that address will be used (a static IP address config-
uration):
xtcp_ipconfig_t ipconfig = {
{ 192, 168, 0, 2 }, // ip address
{ 255, 255, 255, 0 }, // netmask
{ 192, 168, 0, 1 } // gateway

};

If no address is supplied then the server will first try to find a DHCP server on the network
to obtain an address automatically. If it cannot obtain an address from DHCP, it will
determine a link local address (in the range 169.254/16) automatically using the Zeroconf
IPV4LL protocol.

To use dynamic address, the xtcp_uip() and xtcp_lwip() functions can be passed
a structure with an IP address that is all zeros:
xtcp_ipconfig_t ipconfig = {
{ 0, 0, 0, 0 }, // ip address
{ 0, 0, 0, 0 }, // netmask
{ 0, 0, 0, 0 } // gateway

};

2.2 Events and Connections

The TCP/IP application stack client interface (see Client API) is a low-level event based
interface. This is to allow applications to manage buffering and connections in the most
efficient way possible for the application.

Each client will receive packet ready events from the server to indicate that the server has
new data for that client. The client then collects the packet using the get_packet()
call.

The packets sent from the server can be either data or control packets. The type of
packet is indicated in the connection state event member. The possible packet types
are defined in Event types.

A client will typically handle its connection to the XTCP server in the following manner:
xtcp_connection_t conn;
char buffer[ETHERNET_MAX_PACKET_SIZE];
unsigned data_len;
select {
case i.xtcp.packet_ready():
i_xtcp.get_packet(conn, buffer, ETHERNET_MAX_PACKET_SIZE, data_len);
// Handle event
switch (conn.event) {
...

}
break;

}

The client can also call interface functions to initiate new connections, manage the con-
nection and send or receive data.

If the client is handling multiple connections then the server may interleave events for
each connection so the client has to hold a persistent state for each connection.

The connection and event model is the same from both TCP connections and UDP con-
nections. Full details of both the possible events and possible commands can be found
in Functional API.

4

lib_xtcp: TCP/IP library

2.3 New Connections

New connections aremade in two different ways. Either the connect() function is used
to initiate a connection with a remote host or the listen() function is used to listen on
a port for remote hosts to connect to the application. In either case once a connection
is established then the XTCP_NEW_CONNECTION event is received by the client.

By convention with POSIX sockets, a listening UDP connection merely reports
data received on the socket, independent of the source IP address. In XTCP, a
XTCP_NEW_CONNECTION event is sent each time data arrives from a new source. The
API function close() should be called after the connection is no longer needed.

2.4 TCP and UDP

The XTCP API treats UDP and TCP connections in the same way. The only difference is
when the protocol is specified on initializing connections with the interface connect()
or listen() functions.

For example, a client that wishes to listen for HTTP requests over TCP connections on
port 80:
i_xtcp.listen(80, XTCP_PROTOCOL_TCP);

A client could create a new UDP connection to port 15333 on a machine at 192.168.0.2
using:
xtcp_ipaddr_t addr = { 192, 168, 0, 2 };
i_xtcp.connect(15333, addr, XTCP_PROTOCOL_UDP);

2.5 Receiving Data

When data is received for a client the server will indicate that there is a packet ready and
the get_packet() call will indicate that the event type is XTCP_RECV_DATA and the
packet data will have been returned to the get_packet() call.

Data is sent from the XTCP server to client as the UDP or TCP packets arrive from the
ethernet MAC. There is no buffering in the server so it will wait for the client to handle the
event before processing new incoming packets.

2.6 Sending Data

When sending data, the client is responsible for dividing the data into chunks for the
server and re-transmitting the previous chunk if a transmission error occurs.

Note

Note that re-transmission may be needed on both TCP and UDP connections. On
UDP connections, the transmission may fail if the server has not yet established a
connection between the destination IP address and layer 2 MAC address.

The client sends a packet by calling the send() interface function. A resend is done by
calling send() function with the same data buffer as the previous send.

5

lib_xtcp: TCP/IP library

Note

The maximum buffer size that can be sent in one call to xtcp_send is contained in
the mss field of the connection structure relating to the event.

After this data is sent to the server, two things can happen, shown in figure Example
TCP/IP send sequence: Either the server will respond with an XTCP_SENT_DATA event,
in which case the next chunk of data can be sent. Or with an XTCP_RESEND_DATA event
in which case the client must re-transmit the previous chunk of data.

Fig. 3: Example TCP/IP send sequence

2.7 Link Status Events

As well as events related to connections. The server may also send link status events to
the client. The events XTCP_IFUP and XTCP_IFDOWN indicate to a client when the link
goes up or down.

2.8 Server Configuration

The server is configured via arguments passed to server task, see section Server API
(xtcp_uip()/ xtcp_lwip()) and the defines described in Section Configuration De-
fines.

2.9 Stack Configuration

The underlying stack configuration can by modified by including optional header files in
the application. One or both of the following, these will override the uIP or LwIP build
settings. See Configuration Defines.

· xtcp_client_conf.h

· xtcp_conf.h

6

lib_xtcp: TCP/IP library

3 Usage

3.1 Using lib_xtcp

To use this library, include lib_xtcp in the application’s APP_DEPENDENT_MODULES
list in CMakeLists.txt, for example:
set(APP_DEPENDENT_MODULES "lib_xtcp")

All functions and types can be found in the xtcp.h header file:
#include <xtcp.h>

3.2 Stack Selection

To choose which stack to use, simply call either xtcp_uip() or xtcp_lwip() in main.

3.3 Getting Started

The app_simple_webserver example is provided to show how the library can use TCP
traffic for a very simple HTTP server.

The example targets the XCORE-200-EXPLORER dev-kit and 1000BASE-T ethernet with
an RGMII PHY.

The lib_xtcp supports two TCP/IP stacks, either uIP or LwIP stacks. The exam-
ple is configured to support both stacks, selecting the correct entry point depending
on the application compiler defines. To change the selected stack please see the
CMakelists.txt for the example and swap the define for either XTCP_STACK_LWIP or
XTCP_STACK_UIP in APP_COMPILER_FLAGS.
set(APP_COMPILER_FLAGS ${COMPILER_FLAGS_COMMON} -DXTCP_STACK_LWIP)

By default the The IP address for the XCORE will be automatically assigned via DHCP if
xtcp_ipconfig_tipconfig = { ... }; inmain.xc is filledwith zeros. Otherwise,
to set a static IP address, insert the IPv4 address into the first row of ipconfig and the
subnet mask to the second row, the subnet mask is typically { 255, 255, 255, 0
}. For details please see section IP Configuration

The excerpt from the example web server shown below shows how to configure the
lib_xtcp server with the application client here as xhttpd
int main(void) {
xtcp_if i_xtcp[NUM_XTCP_CLIENTS];
smi_if i_smi;
ethernet_cfg_if i_cfg[NUM_CFG_CLIENTS];
ethernet_rx_if i_rx[NUM_ETH_CLIENTS];
ethernet_tx_if i_tx[NUM_ETH_CLIENTS];

par {
// ethernet driver setup here...

// SMI/ethernet phy driver
on tile[1]: smi(i_smi, p_smi_mdio, p_smi_mdc);

on tile[0]: xtcp_lwip(i_xtcp, NUM_XTCP_CLIENTS, null,
i_cfg[CFG_TO_XTCP], i_rx[ETH_TO_XTCP], i_tx[ETH_TO_XTCP],
mac_address_phy, null, ipconfig);

// HTTP server application
on tile[0]: xhttpd(i_xtcp[XTCP_TO_HTTP]);

}
return 0;

}

The function xhttpd(), called frommain will listen for a TCP connection on port 80 and
shows an example of handling the events and data flowing to and from the TCP stack.

7

lib_xtcp: TCP/IP library

For details please see section Events and Connections and the notifications are defined
in Event types.
void xhttpd(client xtcp_if i_xtcp)
{
printstr("**WELCOME TO THE SIMPLE WEBSERVER DEMO**\n");

// Initiate the HTTP state
httpd_init(i_xtcp);

// Loop forever processing TCP events
while(1) {
xtcp_connection_t conn;
char rx_buffer[RX_BUFFER_SIZE];
unsigned data_len;

select {
case i_xtcp.packet_ready(): {
i_xtcp.get_packet(conn, rx_buffer, RX_BUFFER_SIZE, data_len);

if (conn.local_port == 80) {
// HTTP connections
switch (conn.event) {
...

The project supports CMake by default, to build the project first configure then build with,
cd lib_xtcp

cmake -B build -G "Unix Makefiles"

xmake -j -C build

Once built run with,
xrun --xscope bin/app_simple_webserver

When running and with the dev-kit connected to the same network has the computer,
open a browser window and enter the address printed on the xrun terminal. The browser
will display a short message, “Hello World!”.

8

lib_xtcp: TCP/IP library

4 Configuration API

4.1 Configuration Defines

Configuration defines can either be set by adding the a command line option to the build
flags in the application CMakelists file (i.e. -DDEFINE=VALUE) or by adding the file
xtcp_client_conf.h into the application and then putting #define directives into
that header file (which will then be read by the library on build).

XTCP_CLIENT_BUF_SIZE
The buffer size used for incoming packets. This has a maximum value of 1472
which can handle any incoming packet. If it is set to a smaller value, larger incoming
packets will be truncated. Default is 1472.

UIP_CONF_MAX_CONNECTIONS
The maximum number of UDP or TCP connections the server can handle simulta-
neously. Default is 20.

UIP_CONF_MAX_LISTENPORTS
Themaximumnumber of UDP or TCP ports the server can listen to simultaneously.
Default is 20.

UIP_USE_AUTOIP
By defining this as 0, the IPv4LL application is removed from the code. Do this to
save approximately 1kB. Auto IP is a stateless protocol that assigns an IP address
to a device. Typically, if a unit is trying to use DHCP to obtain an address, and
a server cannot be found, then auto IP is used to assign an address of the form
169.254.x.y. Auto IP is enabled by default

UIP_USE_DHCP
By defining this as 0, the DHCP client is removed from the code. This will save
approximately 2kB. DHCP is a protocol for dynamically acquiring an IP address
from a centralised DHCP server. This option is enabled by default.

9

lib_xtcp: TCP/IP library

5 Functional API

See Usage section and Getting Started for details on usage of the following.

5.1 Data Structures/Types

typedef unsigned char xtcp_ipaddr_t[4]
XTCP IP address.
This data type represents a single ipv4 address in the XTCP stack.

struct xtcp_ipconfig_t
IP configuration information structure.
This structure describes IP configuration for an ip node.

enum xtcp_protocol_t
XTCP protocol type.
This determines what type a connection is: either UDP or TCP.
Values:

enumerator XTCP_PROTOCOL_TCP
Transmission Control Protocol

enumerator XTCP_PROTOCOL_UDP
User Datagram Protocol

10

lib_xtcp: TCP/IP library

5.2 Event types

enum xtcp_event_type_t
XTCP event type.
The event type represents what event is occuring on a particular connection. It is
instantiated as part of the xtcp_connection_t structure in the function get_packet().
Values:

enumerator XTCP_NEW_CONNECTION
This event represents a new connection has been made. In the case of a TCP
server connections it occurswhen a remote host firstsmakes contactwith the
local host. For TCP client connections it occurs when a stream is setup with
the remote host. For UDP connections it occurs as soon as the connection is
created.

enumerator XTCP_RECV_DATA
This event occurs when the connection has received some data. The re-
turn_len in get_packet() will indicate the length of the data. The data will be
present in the buffer passed to get_packet().

enumerator XTCP_SENT_DATA
This event occurs when the server has successfully sent the previous piece
of data that was given to it via a call to send().

enumerator XTCP_RESEND_DATA
This event occurs when the server has failed to send the previous piece of
data that was given to it via a call to send(). The server is now requesting for
the same data to be sent again.

enumerator XTCP_TIMED_OUT
This event occurs when the connection has timed out with the remote host
(TCP only). This event represents the closing of a connection and is the last
event that will occur on an active connection.

enumerator XTCP_ABORTED
This event occurs when the connection has been aborted by the local or re-
mote host (TCP only). This event represents the closing of a connection and
is the last event that will occur on an active connection.

enumerator XTCP_CLOSED
This event occurswhen the connection has been closed by the local or remote
host. This event represents the closing of a connection and is the last event
that will occur on an active connection.

enumerator XTCP_IFUP

This event occurs when the link goes up (with valid new ip address). This
event has no associated connection.

enumerator XTCP_IFDOWN
This event occurs when the link goes down. This event has no associated
connection.

11

lib_xtcp: TCP/IP library

enumerator XTCP_DNS_RESULT
This event occurs when the XTCP connection has a DNS result for a request.

struct xtcp_connection_t
This type represents a TCP or UDP connection.
This is the main type containing connection information for the client to handle.
Elements of this type are instantiated by the xtcp_event() function which informs
the client about an event and the connection the event is on.

12

lib_xtcp: TCP/IP library

5.3 Server API

void xtcp_uip(
SERVER_INTERFACE_ARRAY(xtcp_if, i_xtcp, n_xtcp),static_const_unsigned
n_xtcp,NULLABLE_CLIENT_INTERFACE(mii_if, i_mii),NULLABLE_CLIENT_INTERFACE(ethernet_cfg_if,
i_eth_cfg),NULLABLE_CLIENT_INTERFACE(ethernet_rx_if,
i_eth_rx),NULLABLE_CLIENT_INTERFACE(ethernet_tx_if,
i_eth_tx),CONST_NULLABLE_ARRAY_OF_SIZE(char, mac_address0,
MACADDR_NUM_BYTES),NULLABLE_REFERENCE_PARAM(otp_ports_t,
otp_ports),REFERENCE_PARAM(xtcp_ipconfig_t, ipconfig),

)
This functions implements a TCP/IP stack that clients can access via interfaces.
This stack will be the uIP stack.

Parameters

· i_xtcp – The interface array to connect to the clients.
· n_xtcp – The number of clients to the task.
· i_mii– If this component is connected to themii() component in

the Ethernet library then this interface should be used to connect
to it. Otherwise it should be set to null

· i_eth_cfg – If this component is connected to an MAC com-
ponent in the Ethernet library then this interface should be used
to connect to it. Otherwise it should be set to null.

· i_eth_rx – If this component is connected to an MAC compo-
nent in the Ethernet library then this interface should be used to
connect to it. Otherwise it should be set to null.

· i_eth_tx – If this component is connected to an MAC compo-
nent in the Ethernet library then this interface should be used to
connect to it. Otherwise it should be set to null.

· mac_address – If this array is non-null then it will be used to set
the MAC address of the component.

· otp_ports – If this port structure is non-null then the compo-
nent will obtain the MAC address from OTP ROM. See the OTP
reading library user guide for details.

· ipconfig – This xtcp_ipconfig_t structure is used to deter-
mine the IP address configuration of the component.

13

lib_xtcp: TCP/IP library

void xtcp_lwip(
SERVER_INTERFACE_ARRAY(xtcp_if, i_xtcp, n_xtcp),static_const_unsigned
n_xtcp,NULLABLE_CLIENT_INTERFACE(mii_if, i_mii),NULLABLE_CLIENT_INTERFACE(ethernet_cfg_if,
i_eth_cfg),NULLABLE_CLIENT_INTERFACE(ethernet_rx_if,
i_eth_rx),NULLABLE_CLIENT_INTERFACE(ethernet_tx_if,
i_eth_tx),CONST_NULLABLE_ARRAY_OF_SIZE(char, mac_address0,
MACADDR_NUM_BYTES),NULLABLE_REFERENCE_PARAM(otp_ports_t,
otp_ports),REFERENCE_PARAM(xtcp_ipconfig_t, ipconfig),

)
This functions implements a TCP/IP stack that clients can access via interfaces.
This stack will be the lwIP stack.

Parameters

· i_xtcp – The interface array to connect to the clients.
· n_xtcp – The number of clients to the task.
· i_mii– If this component is connected to themii() component in

the Ethernet library then this interface should be used to connect
to it. Otherwise it should be set to null

· i_eth_cfg – If this component is connected to an MAC com-
ponent in the Ethernet library then this interface should be used
to connect to it. Otherwise it should be set to null.

· i_eth_rx – If this component is connected to an MAC compo-
nent in the Ethernet library then this interface should be used to
connect to it. Otherwise it should be set to null.

· i_eth_tx – If this component is connected to an MAC compo-
nent in the Ethernet library then this interface should be used to
connect to it. Otherwise it should be set to null.

· mac_address – If this array is non-null then it will be used to set
the MAC address of the component.

· otp_ports – If this port structure is non-null then the compo-
nent will obtain the MAC address from OTP ROM. See the OTP
reading library user guide for details.

· ipconfig – This xtcp_ipconfig_t structure is used to deter-
mine the IP address configuration of the component.

14

lib_xtcp: TCP/IP library

5.4 Client API

group Xtcp_if
This interface API is for use by application clients that wish to leverage lib_xtcp for
host-to-host data exchange.

Functions

void get_packet(
REFERENCE_PARAM(xtcp_connection_t, conn),char data[n],unsigned
n,REFERENCE_PARAM(unsigned, length),

)
Recieve information/data from the XTCP server.
After the client is notified by packet_ready() it must call this function to receive
the packet from the server.
If the data buffer is not large enough then an exception will be raised.

Parameters

· conn – The connection structure to be passed in that will con-
tain all the connection information.

· data – An array where XTCP server can write data to. This
data array must be large enough to receive the packets being
sent to the client. In most cases it should be assumed that
packets of ETHERNET_MAX_PACKET_SIZE can be received.

· n – Size of the data array.
· length – An integer where the server can indicate the length

of the sent packet.
void packet_ready()

Notifies the client that there is data/information ready for them.
After this notification is raised a call to get_packet() is needed.

void listen(int port_number, xtcp_protocol_t protocol)
Listen to a particular incoming port.
After this call, when a connection is established anXTCP_NEW_CONNECTION
event is signalled.

Parameters

· port_number – The local port number to listen to
· protocol – The protocol to connect with

(XTCP_PROTOCOL_TCP or XTCP_PROTOCOL_UDP)
void unlisten(unsigned port_number)

Stop listening to a particular incoming port.
Parameters

· port_number – local port number to stop listening on
void close(const REFERENCE_PARAM(xtcp_connection_t, conn))

Close a connection.
May still recieve data on a TCP connection. Use abort() if you wish to com-
pletely stop all data. Will continue to listen on the open port the connection
came from.

Parameters

· conn – The connection structure to be passed in that will con-
tain all the connection information.

15

lib_xtcp: TCP/IP library

void abort(const REFERENCE_PARAM(xtcp_connection_t, conn))
Abort a connection.
For UDP this is the same as closing the connection. For TCP the server will
send a RST signal and stop all incoming data.

Parameters

· conn – The connection structure to be passed in that will con-
tain all the connection information.

void connect(
unsigned port_number,xtcp_ipaddr_t ipaddr,xtcp_protocol_t protocol,

)
Try to connect to a remote port.
For TCP this will initiate the three way handshake. For UDP this will assign
a random local port and bind the remote end of the connection to the host
specified.

Parameters

· port_number – The remote port to try to connect to
· ipaddr – The ip addr of the remote host
· protocol – The protocol to connect with

(XTCP_PROTOCOL_TCP or XTCP_PROTOCOL_UDP)
void send(

const REFERENCE_PARAM(xtcp_connection_t, conn),char data[],unsigned
len,

)
Send data to the connection.

Parameters

· conn – The connection structure to be passed in that will con-
tain all the connection information.

· data – An array of data to send
· len – The length of data to send. If this is 0, no data will be

sent and a XTCP_SENT_DATA event will not occur.
void join_multicast_group(xtcp_ipaddr_t addr)

Subscribe to a particular IP multicast group address.
Parameters

· addr – The address of the multicast group to join. It is as-
sumed that this is a multicast IP address.

void leave_multicast_group(xtcp_ipaddr_t addr)
Unsubscribe from a particular IP multicast group address.

Parameters

· addr – The address of the multicast group to leave. It is as-
sumed that this is a multicast IP address.

void set_appstate(
const REFERENCE_PARAM(xtcp_connection_t, conn),xtcp_appstate_t app-
state,

)
Set the connections application state data item.
After this call, subsequent events on this connection will have the appstate
field of the connection set.

16

lib_xtcp: TCP/IP library

Parameters

· conn – The connection structure to be passed in that will con-
tain all the connection information.

· appstate – An unsigned integer representing the state. In C
this is usually a pointer to some connection dependent infor-
mation.

void bind_local_udp(
const REFERENCE_PARAM(xtcp_connection_t, conn),unsigned
port_number,

)
Bind the local end of a connection to a particular port (UDP).

Parameters

· conn – The connection structure to be passed in that will con-
tain all the connection information.

· port_number – The local port to set the connection to.
void bind_remote_udp(

const REFERENCE_PARAM(xtcp_connection_t, conn),xtcp_ipaddr_t
ipaddr,unsigned port_number,

)
Bind the remote end of a connection to a particular port and ip address (UDP).
After this call, packets sent to this connection will go to the specified address
and port

Parameters

· conn – The connection structure to be passed in that will con-
tain all the connection information.

· ipaddr – The intended remote address of the connection
· port_number – The intended remote port of the connection

void request_host_by_name(const char hostname[], unsigned name_len)
Request a hosts IP address from a URL.

Note

LWIP ONLY.

Parameters

· hostname – The human readable host name, e.g.
“www.xmos.com”

· name_len – The length of the hostname in characters
void get_ipconfig(REFERENCE_PARAM(xtcp_ipconfig_t, ipconfig))

Fill the provided ipconfig address with the current state of the server.
Parameters

· ipconfig – IPconfig to be filled.

17

lib_xtcp: TCP/IP library

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

18

	Introduction
	Terms

	Overview
	IP Configuration
	Events and Connections
	New Connections
	TCP and UDP
	Receiving Data
	Sending Data
	Link Status Events
	Server Configuration
	Stack Configuration

	Usage
	Using lib_xtcp
	Stack Selection
	Getting Started

	Configuration API
	Configuration Defines

	Functional API
	Data Structures/Types
	Event types
	Server API
	Client API

