ANO02011: USB Audio with concurrent multi-threaded DSP

2 MOS

ANO02011: USB Audio with concurrent multi-threaded DSP

Publication Date: 2025/1/18
Document Number: XM-006859-AN v1.0.0

IN THIS DOCUMENT

1 Introduction 1
2 DSP Pipelines 4
3 Introductionto USB Audio 5
4 Executing the DSP on the other physicalcore 7
5 Parallelising DSP 11
6 Data Parallel DSP 1
7 Data Pipelining DSP 13
8 Optimised Data PipeliningDSP 16
9 Controlling 20

In this app note we describe how to implement a multi-threaded DSP system on the
xcore. As an example, we integrate it into the XMOS USB Audio stack. Integration into
other software stacks follows a very similar process.

USB Audio is a highly configurable piece of software; in its simplest form it may just
interface a single ADC to USB Audio; but it can deal with a multitude of 12S, TDM, DSD,
S/PDIF, ADAT and other interfaces. As such, it provides a useful framework to support
the DSP functionality that may include:

» Equalisation

» Mixing

» Dynamic range compression
» Audio effects

This app note discusses the recommended method of partitioning the DSP functionality
between multiple xcore threads, integrating them into a system with the audio interfaces
using the USB audio stack API and tuning the DSP system in-situ using the XSCOPE to
monitor signals in the DSP pipeline.

For reference, we refer to the following repositories that you may want to use:
» <http://github.com/xmos/sw_usb_audio.git> for the USB Audio reference design
» <https://github.com/xmos/lib_xua.git> for the USB Audio library design

1 Introduction

In its simplest case, DSP can be added to a program by simply adding a number of func-
tion calls. Each function call typically processes a sample and produces a sample. This
app note starts with that case, and then extends to the case where so much signal pro-
cessing needs to be done that multiple concurrent DSP tasks need to be fired off. The
latter takes advantage of the multi-threaded nature of the XCORE.Al processor where
each thread is allocated part of the processing bandwidth.

This process is called developing a DSP pipeline, and it consists of a number of distinct
phases:

http://github.com/xmos/sw_usb_audio.git
https://github.com/xmos/lib_xua.git

ANO02011: USB Audio with concurrent multi-threaded DSP

1. Capture - Assemble chains of DSP component functions using DSP library compo-
nents optimised for the target micro-architecture with, where necessary, customised
DSP elements.

2. Map - Partition the DSP pipeline between the xcore threads.

3. Configure - Determine the filter coefficients to satisfy the frequency domain require-
ments.

4. Tune - Tune the DSP pipeline using representative signal samples

Typically there would a be a final phase to port the pipeline, however, the xcore devices
support the XSCOPE high-performance debugging interface with minimal impact on the
real-time performance of the application under development. This enables the use of
the XCORE itself for tuning by providing the ability to drive test samples and monitor any
point in the DSP pipeline. For audio applications the high-performance of the XSCOPE
interface enables continuous monitoring in real-time.

This on-device development environment offers the significant advantages of tuning the
DSP pipeline in-situ with real data and eliminating risks associated with the porting of the
DSP pipeline to the target device in addition to the use of custom DSP components with-
out the development of an equivalent model for an external development environment.

1.1 Capture

There are a few repositories with DSP and general maths functions available, with differ-
ent trade-offs between speed, accuracy, and ease-of-use.

<https://github.com/xmos/lib_xcore_math> is the xcore.ai library for high perfor-
mance maths functions. Many of them are optimised to make use of the vector unit
and use 40-bit accumulators.

<https://github.com/xmos/lib_dsp> for high-resolution maths functions that execute
on the CPU often using 64-bit accumulators. These functions are not as fast as
lib_xcore_math

<https://github.com/xmos/lib_src> for synchronous and asynchronous sample rate
conversion functions.

<https://github.com/xmos/lib_audio_dsp> for audio effects functions. (this is based
on lib_xcore_math above)

These functions and components, along with any custom DSP components are assem-
bled to form the DSP graph. At this point, the DSP graph can reside in a single thread; the
performance will be limited to 20% of the performance from a single xcore tile but can
be tested with test data.

1.2 Map

The mapping process is a stage that is not necessary with a single-threaded, dedi-
cated DSP device. However, DSP systems often contain multiple interfaces and the
dedicated DSP device needs to implement a scheduler to process each individual data
stream which is greatly simplified with a multi-threaded platform. More importantly,
when the DSP pipeline interfaces between interfaces operating at different sample rates,
this scheduling task is very complex but a multi-threaded xcore platform can operate dif-
ferent threads in each clock domain.

Mapping the DSP pipeline to xcore threads is a two stage process:

1. Split the DSP graph into sub-graphs for each sample clock domain if applicable. In-
terfaces between the sub-graphs are supported through the sample rate conversion
component available in the 1ib_src library.

https://github.com/xmos/lib_xcore_math
https://github.com/xmos/lib_dsp
https://github.com/xmos/lib_src
https://github.com/xmos/lib_audio_dsp

ANO02011: USB Audio with concurrent multi-threaded DSP

2. Foreach sub-graph, partition the elementary DSP components into further sub-graphs
where the combined instruction count of the elements can be supported by the thread
within the sample period.

DSP requires guaranteed, hard real-time execution and the unique multi-threaded micro-
architecture of the xcore pipeline along with the single-cycle access to on-chip primary
memory, ensures that each instruction completes its path through the pipeline before
executing the following instruction, eliminating data hazard and memory latency uncer-
tainty. This means that it is straight forward to calculate the latency of the sub-graph.

Allowing a handful of instruction slots for each exchange of samples between threads,
the number of instructions available for the DSP components is readily calculated.

Inside the thread, the DSP sub-graph is statically scheduled through the ordering of the
individual DSP component functions. In order to link to the rest of the graph in the other
threads, two additional functions are required: one to initiate coommunication by sending
the requests through the channels, followed by another to wait for the response events
and updating the state variables appropriately.

Each DSP component needs to start from a known state. The recommended state is
where all sample history is set to zero. The code could start to execute at any point but
computing new samples from the initialised state is pointless so it is recommended that
each thread starts at the point of exchanging data with other threads. This ensures that
the threads are primed for the samples from input interfaces as soon as they become
available.

When designing a multi-threaded application with communication between the threads,
care is required to avoid creating a deadlock which can arise from a dependency loop
from data, code or limited resources.

Data dependencies are avoided in that we, like in hardware, compute an output state
based on an input state. Given an input state, we perform a series of DSP functions until
the final function yields the output state. There are no data dependencies.

The channels that support communication between threads in an xcore are lossless
and therefore block. When a communication takes place over a channel between two
threads, the code execution of the threads aligns around the data transfer but the order-
ing of communication in each thread must follow the correct order to avoid deadlock.

In each sample synchronous sub-system, data is exchanged between threads once per
sample and we are free to choose the ordering that maximises performance.

The total time taken to complete the data exchange is less important than the time each
thread requires to complete its communication; once a thread has completed its commu-
nication, it is free to process the next sample while other threads are still communicating.
Consequently, the performance optimisation is obtained when the communication time
for each thread is minimised, maximising the instructions available to compute the next
sample.

In the USB Audio platform the communication from the interfaces to and from the DSP
pipeline are adjacent and should, therefore, be consecutive. In general, for threads that
have a single sample input and output, the optimal communication ordering will be to
propagate the communication along the signal path but we are free to choose the direc-
tion which can be the opposite of the signal sample flow.

Exploiting parallel paths within the DSP pipeline allows the use of individual threads for
each path, extending the width of DSP elements that can be accommodated within each
thread. This reduces the latency of the DSP pipeline implementation.

1.3 Configure

Filter coefficients for, for example, FIR and IIR filters are determined from the required fil-
ter characteristics. XMOS provides a suite of Python scripts to map filter characteristics
to data structures containing the filter coefficients.

ANO02011: USB Audio with concurrent multi-threaded DSP

The xcore scalar pipeline supports a wide range of data-types including single precision
floating point while the vector processing pipeline offers SIMD capabilities supporting
eight 32-bit operations in each instruction but is limited to fixed point data formats. Con-
sequently, to maximise the performance, fixed-point data-types should be used where
possible. This is also desirable as the interfaces on either side of the pipeline (12S, TDM,
ADAT, S/PDIF, USB, AVB) typically use fixed point formats. While the dynamic range of
the signal can be different at each stage of the DSP pipeline, it is static and can be readily
accommodated by gain terms.

1.4 Tune

The XSCOPE debugging interface can write data structures to memory in the xcore as
well as stream signals from points along the DSP pipeline. The bandwidth available
through the XSCOPE interface is sufficient to monitor several signals in real time for
audio applications.

A monitoring point is selected by adding the code:

xscope_int(channel, signal);

where required in the DSP code. The debugger generates a standard VCD file for the
signals to be viewed through the user’s preferred VCD viewer.

1.5 Integration of the DSP pipeline into the system

The flexibility of the threads in the xcore enable single device embedded solutions by
integrating a diverse range of compute requirements including DSP, 10, Control and Al
inference models.

In most cases, the peripheral interfaces will drive the DSP pipeline and define the sample
rate. These interfaces can be considered to behave in the same way as any other DSP
component and can be integrated into the DSP pipeline like a DSP element.

In an embedded application there will be a control layer which will take responsibility for
controlling the operation of the DSP pipeline by setting its parameters, for example, the
control layer may be controlling the display and user input peripherals in order to control
the characteristics of the DSP pipeline.

An efficient method of acquiring the necessary interfaces is to extend one of the XMOS'
existing platforms such as the USB Audio platform.

2 DSP Pipelines

In this section we summarise the principles of what a DSP pipeline looks like typically. We
assume that the reader is familiar with DSP. A typical pipeline is shown in Typical pipeline
of DSP operations. In this pipeline digital samples enter the pipeline (on the left-hand-
side in this case), flow through a series of DSP blocks, and eventually samples leave the
pipeline (on the right-hand-side in this case).

/ ot \
generation
Input Volume Wi Equaliser OQutput
frames control e frames
Reverb /
generatio

Fig. 1: Typical pipeline of DSP operations

We use the following terminology to describe these systems:

ANO02011: USB Audio with concurrent multi-threaded DSP

Samples enter the pipeline at a sample-rate. This sample rate may be 48,000 Hz for
an audio pipeline. Samples also exit the pipeline at a sample rate, and each of the
blocks pass data along at a sample rate. Where the sample rate on input and output
is not the same we typically have a sample-rate-conversion. In this document we as-
sume that all sample-rates are synchronous to a single clock, and that all sample rate
conversions are synchronous

There may be multiple channels. For example, a system may be mono (single chan-
nel), stereo (two channels) or 7.1 (eight channels). We call one sample on each channel
a frame, and hence the word frame-rate may be used interchangeably with the word
sample-rate.

Frames may be blocked for efficiency or for algorithm considerations. For example,
we may choose for the DSP pipeline to operate on blocks of 48 frames. If the frame-
rate is 48,000 Hz that means that the DSP pipeline operates on a heart-beat of 1,000
Hz (1 ms). Blocking may improve efficiency but will also increase latency through the
pipeline. Blocking may be unavoidable for certain algorithms such as an FFT.

Samples are stored in a data-format, for example, 16-bit int, 24-bit int, or float. This
document is agnostic to the data-format used, but we generally advise that for all
integer formats data is stored in the higher-order-bits of a 32-bit word (that makes all
modules agnostic to the particular input format). Floating point is also possible but
usually not as efficient.

Given a pipeline of DSP operations, these can be trivially mapped onto a single C-function
where each statement implements one of the blocks of the DSP pipeline (by calling an
appropriate DSP function), and data is passed from one function to the next through the
use of an array of data where the array is large enough to hold a block of frames. Each
function may require some local state (eg, biquads, FIRs) that is passed along subse-
quent iterations.

This document uses those functions as a starting point, and discusses how to integrate
those functions on an XCORE, and how to split those functions up over multiple threads.

3 Introduction to USB Audio

The basic structure or USB Audio is shown below in Structure of USB Audio.

One tile of XU316
UsB USB
UsB Device Audio
fost, =P Diiver [*>| handling
(eg PO) (D) (UA)

Other tile of XU316

.. empty ...

Fig. 2: Structure of USB Audio

On the left is a USB interface to the host - this is dealt with by the XUD and XUA libraries.
XUD <https://www.github.com/xmos/lib_xud> is the low level USB library for XCORE,

> Y,

https://www.github.com/xmos/lib_xud

ANO02011: USB Audio with concurrent multi-threaded DSP

XUA <https://www.github.com/xmos/lib_xua> is the USB-Audio protocol implementa-
tion on xcore. On the right is a series of interfaces (ADC, DAC, S/PDIF, ADAT). USB Audio
provides a path from the left to the right (USB host computer to the interfaces), this is
called the output path; and a path from the right to the left (the interfaces to the USB
host computer) that is called the input path. The terms input-path and output-path are
host-centric names, and we use input and output this was as it is consistent with the
USB standard nomenclature.

The XU316 device has two tiles, and for many designs one of the tiles will be empty.
This is not always the case, as there may be a situation where the ADC/DAC I/0 pins are
located on the other tile. This subtlety does not matter for addition of simple DSP. Also,
the physical core used for the USB stack may be tile O or tile T depending on the design.

3.1 API offered by USB Audio

The USB Audio stack provides one function that you need to override in order to add any
DSP capability to your system:
extern void UserBufferManagement(

unsigned output_samples[NUM_OUTPUTS],
unsigned input_samples[NUM_INPUTS]);

For brevity we use NUM_OUTPUTS and NUM_INPUTS throughout this code to refer to
the number of output audio-channels (NUM_USB_CHAN_OUT) and the number of input
audio-channels (NUM_USB_CHAN_IN).

The UserBufferManagement function is called at the sample rate of the USB Audio
stack (eg, 48 kHz) and between them the two arrays contain a full multi-channel audio-
frame. The first array carries all the data that shall be shipped to the interfaces, the
second array carries all the data from the interfaces that shall be shipped to the USB
host. You can chose to intercept and overwrite the samples stored in these arrays. The
interfaces are ordered first all I2S channels, then optional S/PDIF, finally optional ADAT.

A second function that you can overwrite is:

extern void UserBufferManagementInit(unsigned int curSampFreq);

This function is called once before the first call to UserBuf ferManagement. The code
in this document does not require this function, but other code may require it.

Note that the values of the type are unsigned, a 32-bit number. The use of these 32 bits
depends on the data-types used for the audio, typical values are 16-bit PCM (the top 16
bits are a signed PCM value), 24-bit PCM (the top 24 bits are a signed PCM value), 32-bit
PCM (the top 32 bits are a signed PCM value), or DSD (the 32 bits are PDM values, with
the least significant bit representing the oldest 1-bit value).

In this example we just modify the output path - and we use NUM_OUTPUTS=2 and
NUM_INPUTS=4. We can run the output_samples through a cascaded_biquad in order
equalise the output signal. One can go further an apply independent biquads to the two
channels to independently equalise stereo speakers:

#define FILTERS 4
11/ b2/a@ b1/a@ bo /a0 -al/a@ -a2/a@
int32_t filter_coeffs[FILTERS*5] = {
261565110, -521424736, 260038367, 521424736, -253168021,
255074543, -506484921, 252105451, 506484921, -238744538,
280274501, -523039333, 245645878, 523039333, -257484924,
291645146, -504140302, 223757950, 504140302, -246967640,
I
int32_t filter_states[NUM_INPUTS+NUM_OUTPUTS][FILTERS*4];
void UserBufferManagement(
unsigned output_samples[NUM_OUTPUTS],
unsigned input_samples[NUM_INPUTS])

for(int i = @; i < NUM_OUTPUTS; i++) {
output_samples[i] = dsp_filters_biquads((int32_t) output_samples[i],

(continues on next page)

https://www.github.com/xmos/lib_xua

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

filter_coeffs,
filter_states[i],
FILTERS,
28);
}
}

void UserBufferManagementInit(unsigned int curSampFreq) {}

If one wants, one can combine input_samples and output_samples in order to mix data
from interfaces or USB into USB or the interfaces.

The sample rate depends on the environment. The USB application typically has a list of
supported sample rates (this may just be one sample-rate), and the user can on the host
select which sample rate they want to use. For simplicity, we do not discuss sample-rate
changes; we assume that there is just one sample-rate.

In this application note we use as a running example a cascaded biquad filter that is set
to a fixed operation:

First stage Peaking Filter 200 Hz, 1 octave -20 dB,
Second stage Peaking Filter 400 Hz, 1 octave +10 dB,
Third stage Peaking Filter 800 Hz, 1 octave -20 dB,
Fourth stage Peaking Filter 1600 Hz, 1 octave +10 dB,

This is not a necessarily a realistic set of filters, but it is something that can easily be
heard.

3.2 Timing requirements

The XMOS USB Audio stack is designed to operate on single samples in order to minimise
latency introduced by the audio stacks. The UserBufferManagement () function is
called from the core of the USB stack; it is called at the native frame rate of the system
(for example 44.1 kHz), and it should therefore take no longer than one sample period to
finish it's operation. In fact, it has a bit less time than that in order to guarantee that the
samples reach the next stage of the pipeline.

Given the speed of a single thread in a system (for example 600 / 8 = 75 MHz) and
the sample rate (say, 44.1 KHz sample rate) we can calculate the number of issue slots
available between two samples: 75,000,000 / 44,100 = 1,700 issue slots. This includes
the time taken by the USB stack to shuffle data around. Taking that into account there is
no more than 1,300 issue-slots available for DSP using this method, which allows for only
a limited number of FIR taps or biquads to be used. The timeline is shown in Timeline of
executing DSP inside a thread.

What is more, with higher sample rates the overhead of the USB stack is the same, but
the time between samples is squeezed, further limiting the number of cycles available
for DSP.

As XCORE is a concurrent multi-threaded multi-core processor, there are other threads
and cores available for DSP. It depends on the precise configuration of the USB stack
(whether you use special interfaces such as S/PDIF, ADAT, MIDI) but in a simple case
with just 12S, USB Audio uses around 30% of the compute, with one tile being completely
empty.

We will first look at how to use a single thread on the other tile for DSP, then we will look
in how to generally parallelise DSP, and then we will look into using multiple threads for
DSP.

4 Executing the DSP on the other physical core

The XCORE architecture offers a communication fabric to efficiently transport data be-
tween threads and between cores. Communication works on channels. A channel has

/ Y,

Frame 5
arrives
Frame 4
departs

Frame 6
arrives
Frame 5
departs

Frame 7
arrives
Frame 6
departs

ANO02011: USB Audio with concurrent multi-threaded DSP

g ey g5 [Jabeuey J8ling

UserBufferManagement ()
function

Spare time

USB Stack moving
data around

(zH4 L 'pp 404) SN G/9°22

9 auel} 450 II

-

oul|

Note that the
size of a box
is not to scale
with the
execution time

Fig. 3: Timeline of executing DSP inside a thread

two ends, A and B, and data that is output into A has to be input on B, and data that is
output into B has to be input from A. A and B can be inside the same physical core on
different threads, or on different cores on the same chip, or on different chips in the same
system; communication always works, but performance is lower when the physical dis-

tance increases.

A channel is like a two way communication pipe. It has very little buffering capacity, so
both ends of the channel have to agree to communicate otherwise one side will wait for

the other.

The data types and functions for communicating data provided by 1ib_xcore are:

chanend_t c¢ ; atype holding the reference to one end of a channel

chan ch ; atype holding a complete channel with both ends

chan_out_word(c, x); afunction that outputs a word x over channel-end c.

4

ANO02011: USB Audio with concurrent multi-threaded DSP

x = chan_in_word(c) ; afunction that inputs a word x over channel-end c.

chan_out_buf_word(c, x, n); a function that outputs n words from array x
over channel-end c.

chan_in_buf_word(c, x, n) ; afunctionthatinputs n words over channel-end
cinto array x

We could also use XC instead of C and lib-xcore; the resulting behaviour is identical.
There is equivalent functions chanend_#* that create streaming channels rather than
synchronised channels. We do not use them in this app-note, but they can be useful
where extra performance and predictability are required.

Typical code to off-load the DSP to the other tile involves a UserBufferManagement
function that outputs and inputs samples to the DSP task, a user_main . h function that
declares the extra code needed to create the channels and start the DSP task, and a DSP
task that receives and transmits the data.

The UserBufferManagement code is:

static chanend_t g_c;

void UserBufferManagement (
unsigned output_samples[NUM_OUTPUTS],
unsigned input_samples[NUM_INPUTS]
) A

chan_out_buf_word(
chan_out_buf_word(
chan_in_buf_word(
chan_in_buf_word(

output_samples, NUM_OUTPUTS);
input_samples, NUM_INPUTS);
output_samples, NUM_OUTPUTS);

g-c,
g-c,
g-c,
g_c, input_samples, NUM_INPUTS);

¥

void UserBufferManagementSetChan(chanend_t c) {
g-c =c¢;

}

void UserBufferManagementInit() {}

The code to be included in the main program is as follows:

#define USER_MAIN_DECLARATIONS \
chan c_data_transport; \
interface i2c_master_if i2c[1];

#define USER_MAIN_CORES \
on tile[1]: { \
dsp_main(c_data_transport);

}

on tile[@]: {
board_setup();
xk_audio_316_mc_ab_i2c_master(i2c);

)

on tile[1]: {
UserBufferManagementSetChan(c_data_transport);
unsafe

{
}

i_i2c_client = i2c[0@];

P

}

And finally the code to perform the DSP is the opposite of the buffer-management func-
tion:

#define FILTERS 4
/1 b2/a@ b1/a@ bo /a0 -al/a@ -a2/a@
int32_t filter_coeffs[FILTERS*5] = {
261565110, -521424736, 260038367, 521424736, -253168021,
255074543, -506484921, 252105451, 506484921, -238744538,
280274501, -523039333, 245645878, 523039333, -257484924,
291645146, -504140302, 223757950, 504140302, -246967640,
I

int32_t filter_states[NUM_INPUTS+NUM_OUTPUTS][FILTERS*4];
void dsp_main(chanend_t c_data) {

int for_usb [NUM_INPUTS + NUM_OUTPUTS];
int from_usb[NUM_INPUTS + NUM_OUTPUTS];

while(1) {
chan_in_buf_word(c_data, &from_usb[@], NUM_OUTPUTS) ;
chan_in_buf_word(c_data, &from_usb[NUM_OUTPUTS], NUM_INPUTS);
chan_out_buf_word(c_data, &for_usb[@], NUM_OUTPUTS) ;

chan_out_buf_word(c_data, &for_usb[NUM_OUTPUTS], NUM_INPUTS);
(continues on next page)

K Y,

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

for(int i = 0; i < 2; i++) {
for_usb[i] = dsp_filters_biquads((int32_t) from_usb[i],

filter_coeffs,
filter_states[i],
FILTERS,
28);

}

}
}

The execution of two of the tasks (the USB Task calling UserBufferManagement) and
the DSP task (dsp_main) is shown below in Timeline of executing the two concurrent
threads.

o
c
—h
—
D
=
o
= (2]
o vl
>
Q ~+
«Q jAV)
D wn
Frame 5 - =~)
arrives ey
aves -
departs - » I:l USB work
el issue-slots/
instructions I:l DSP work
2 N I:l Communication
=y 2
g (3
& 125 handli
& 1670 ’ - "
¢ issue-slots/
instructions |:| Idle
Frame 6 Note that the
arrives :' size of a box
Frame 4 - 3 is not to scale
departs : @ with the
1anel execution time,
=
(o2}
Frame 7
arrives
Frame 5
departs

Fig. 4: Timeline of executing the two concurrent threads

Time progresses from top to bottom, and we show a snapshot of what happens around
the time that Frame numbers 5..7 arrive over 12S. The small dark blue box is when Frame
5 arrives over 12S whilst a processes Frame 3 is sent out over I12S. The light blue boxes
below are the communication between the two tasks; UserBufferManagement() on
the left, and the first four lines of the while-loop in dsp_main() on the right. After that,

10 y,

ANO02011: USB Audio with concurrent multi-threaded DSP

the USB task has a bit of idle time (to cope with higher sample rates and more channels),
and the DSP task starts the DSP. Whilst the DSP is operating on Frame 5; Frame 6 arrives
in the USB task, and the DSP task must finish before the next communication phase.
Please note that the boxes are not drawn to scale otherwise some of them would be too
small to see.

It is important to note that the grey area where the Buffer Manager is idle is time that
can be used by other threads. This means that up to five DSP threads can be active at
this time, taking all the bandwidth of the processor. During the period where the Buffer
Manager is working, the DSP threads will run slightly slower; probably hardly noticeable
as they will also be having some down time over this period.

In this example, we assume a 44,100 Hz sample rate. If the DSP thread is too late, then
all the timings will fail; it has to be on time, but it is allowed to be just in time. Note that
the DSP processing is synchronous with the frame transmissions, but the phase is off.
Every sample is processed a bit later than arriving, leading to a whole sample delay

5 Parallelising DSP

Parallelisation involves splitting work into a multitude of tasks. Tasks can then be
mapped onto threads. Thereason to separate these two words is that a task is a software
concept: a set of instructions that does something meaningful, for example a shelf-filter.
If we have 10 of those tasks then we can execute five of them in Thread 7 and five of
them in Thread 2 and we have achieved 2x parallelism.

Typically tasks are dependent on each other, and when the design is drawn out that is re-
flected by arrows from one task into the other, representing data being transported from
one task to the next. When the tasks are mapped onto threads these data dependencies
have to be adhered to.

DSP lends itself to parallelism as there are typically large clusters of compute on identi-
fied sets of data. Each DSP problem will be parallelised individually, and in this document
we distinguish two models on which the rest can be built:

Data parallelism, for example, output-conditioning on stereo speakers. In this case,
one could put the DSP for the left speaker in task 1, and the DSP for the right speaker
in task 2.

Data Pipelining. A series of DSP tasks are executed one after the other on an audio
stream.

In general this gives rise to two sorts of designs. The first design is one where each
sample is being fed into a task, and the tasks independently of each other all produce the
output samples. The second design is one where the samples run through a sequence of
tasks before finally producing the output samples. The latter architecture has an inherent
higher latency than the former design and a slightly more complex design. The former
is a very simple design that we shall discuss first.

6 Data Parallel DSP

Data parallelism is a simple extension of the previous example. Instead of using a single
channel we use multiple channels to communicate the data onto the DSP task. This gives
rise to the timeline shown below in Timeline of executing the two concurrent threads.

Like before, we use channels to communicate between the DSP tasks, what is new is
that we have to create those DSP tasks, and create the channels between them. The
only difference is in the dsp_main function.

1 y,

ANO02011: USB Audio with concurrent multi-threaded DSP

o
e
—|-|
_h
(0]
= (=) (=
(92] (72]
= -0 O
Q
> —~+ —~+
% o o
«Q w [%2]
(0] z ~
Frame 5 - i
arrives Key
Frame 3
departs - USB work
. DSP work
issue-slots/
instructions
N - Communication
(=21
S
5 - 125 handling
issue-slots/
F 6 instructions Note that the
rane — size of a box
arrives —_
Frame 4 3 is not to scale
departs @ with the
execution time,
Frame 7
arrives
Frame 5
departs

Fig. 5: Timeline of executing the two concurrent threads

The UserBufferManagement code is:

static chanend_t g_c, g_c2;

void UserBufferManagement (
unsigned output_samples[NUM_OUTPUTS],
unsigned input_samples[NUM_INPUTS]

) A
chan_out_buf_word(g_c, output_samples, NUM_OUTPUTS);
chan_out_buf_word(g_c, input_samples, NUM_INPUTS);
chan_in_buf_word(g_c, output_samples, NUM_OUTPUTS/2);
chan_in_buf_word(g_c, input_samples, NUM_INPUTS/2);
chan_out_buf_word(g_c2, output_samples, NUM_OUTPUTS);
chan_out_buf_word(g_c2, input_samples, NUM_INPUTS);
chan_in_buf_word(g_c2, output_samples+NUM_OUTPUTS/2, NUM_OUTPUTS/2);
chan_in_buf_word(g_c2, input_samples +NUM_INPUTS/2, NUM_INPUTS/2);
}

void UserBufferManagementSetChan(chanend_t ¢, chanend_t c2) {
g-c =c;
g_c2 = c2;
¥
(continues on next page)

12 x

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

void UserBufferManagementInit() {}

The code to be included in the main program is as follows:

#define USER_MAIN_DECLARATIONS \
chan c1, c2; \
interface i2c_master_if i2c[1];

#define USER_MAIN_CORES \
on tile[1]: { \
dsp_maini(c1);

-~

¥
on tile[1]: { \
dsp_main2(c2);

}

on tile[@]: {
board_setup();
xk_audio_316_mc_ab_i2c_master(i2c);

)
on tile[1]: {
UserBufferManagementSetChan(c1, ¢2);
unsafe
{
i_i2c_client = i2c[0@];

i

P

}

And finally the code to perform the DSP is the opposite of the buffer-management func-
tion:

#define FILTERS 4
/1 b2/a@ b1/a@ bo /a0 -al/a@ -a2/ad
int32_t filter_coeffs[FILTERS*5] = {
261565110, -521424736, 260038367, 521424736, -253168021,
255074543, -506484921, 252105451, 506484921, -238744538,
280274501, -523039333, 245645878, 523039333, -257484924,
291645146, -504140302, 223757950, 504140302, -246967640,
b

int32_t filter_states [NUM_OUTPUTS/2][FILTERS#4];
int32_t filter_states2[NUM_OUTPUTS/2][FILTERS*4];

void dsp_maini(chanend_t c_data) {
int for_usb [NUM_INPUTS/2 + NUM_OUTPUTS/2];
int from_usb[NUM_INPUTS + NUM_OUTPUTS];

while(1) {
chan_in_buf_word(c_data, &from_usb[0], NUM_OUTPUTS) ;
chan_in_buf_word(c_data, &from_usb[NUM_OUTPUTS], NUM_INPUTS);
chan_out_buf_word(c_data, &for_usb[@], NUM_OUTPUTS/2) ;

chan_out_buf_word(c_data, &for_usb[NUM_OUTPUTS/2],NUM_INPUTS/2);
for(int i = 0; i < NUM_OUTPUTS/2; i++) {
for_usb[i] = dsp_filters_biquads((int32_t) from_usb[i],
filter_coeffs,
filter_states[i],
4

28);
}

dsp_main2 is identical, and the code may be shared provided they have separate state
to operate on.

This method expands to five threads, after which the XCORE.Al pipeline is fully used.
More threads can be used, but no performance will be gained. This is because the full
number of issue cycles will be divided between more threads.

7 Data Pipelining DSP

We can make an arbitrary pipeline of DSP processes by creating an extra thread that
acts as the source of the data and as the sync of the data. This thread’s purpose is to
perform just those tasks. The reason that this task is special is that it loops the data path
around, because what came out of the pipe has to go back into the USB Audio stack at a
determined point in time. The pipeline that we're building is shown in Example pipeline.

The pipeline that we are building requires a bit of plumbing to make it all work but the
code is reasonably straightforward otherwise.

13 y,

ANO02011: USB Audio with concurrent multi-threaded DSP

Fig. 6: Example pipeline

DSP task 1B is implemented by dsp_thread1b and picks up data from the distributor,
and outputs data to dsp tasks 1A and 1B:

#define FILTERSO 1

static __attribute__((aligned(8))) int32_t filter_coeffs@[FILTERSO*5] = {
261565110, -521424736, 260038367, 521424736, -253168021,
i

static __attribute__((aligned(8))) int32_t filter_states@[NUM_OUTPUTS][FILTERSO*4];

void dsp_thread@(chanend_t c_fromusb,
chanend_t c_tola, chanend_t c_tolb) {
int from_usb[NUM_OUTPUTS];
int for_1[NUM_OUTPUTS];
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_fromusb, &from_usb[8], NUM_OUTPUTS);

for(int i = @; i < NUM_OUTPUTS; i++) {
for_1[i] = dsp_filters_biquads((int32_t) from_usb[i],
filter_coeffs®,
filter_statesO[i],
FILTERSO,
28);
}

// And deliver my answer back
chan_out_buf_word(c_tola, &for_1[8], NUM_OUTPUTS);
chan_out_buf_word(c_tolb, &for_1[8], NUM_OUTPUTS);

}

DSP task 1A is implemented by dsp_thread1a and picks up data from the DSP task O,
and outputs data to dsp task 2:

#define FILTERS1a 2

11/ b2/a@ b1/a@ be /a0 -al/a@ -a2/al

static __attribute__((aligned(8))) int32_t filter_coeffsla[FILTERSTa*5] = {
261565110, -521424736, 260038367, 521424736, -253168021,
255074543, -506484921, 252105451, 506484921, -238744538,

15

static __attribute__((aligned(8))) int32_t filter_states1a[NUM_OUTPUTS/2][FILTERS1a*4];

void dsp_threadla(chanend_t c_frome,
chanend_t c_to2) {
int from_@[NUM_OUTPUTS];
int for_2[NUM_OUTPUTS/2];
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_from@, &from_8[8], NUM_OUTPUTS);

(continues on next page)

14 x

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

for(int i = ©; i < NUM_OUTPUTS/2; i++) {
for_2[i] = dsp_filters_biquads((int32_t) from_0[i],
filter_coeffsila,
filter_statesla[i],
FILTERSTa,
28);
}

// And deliver my answer back
chan_out_buf_word(c_to2, &for_2[0], NUM_OUTPUTS/2);

}

DSP task 1B is implemented by dsp_thread1b and picks up data from the DSP task 0,
and outputs data to dsp task 2:

#define FILTERS1b 2

/] b2/a@ b1/a@ bo /a0 -al/a@ -a2/al

static __attribute__((aligned(8))) int32_t filter_coeffs1b[FILTERSTb*5] = {
280274501, -523039333, 245645878, 523039333, -257484924,
291645146, -504140302, 223757950, 504140302, -246967640,

b

static __attribute__((aligned(8))) int32_t filter_states1b[NUM_OUTPUTS/2][FILTERS1b*4];

void dsp_threadlb(chanend_t c_frome,
chanend_t c_to2) {
int from_@[NUM_OUTPUTS];
int for_2[NUM_OUTPUTS/2];
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_from@, &from_8[8], NUM_OUTPUTS);

for(int i = ©; i < NUM_OUTPUTS/2; i++) {
for_2[i] = dsp_filters_biquads((int32_t) from_@[i],
filter_coeffsib,
filter_statesib[i],
FILTERS1b,
28);
}

// And deliver my answer back
chan_out_buf_word(c_to2, &for_2[0], NUM_OUTPUTS/2);

¥

Similarly, DSP task 2 is implemented by dsp_thread2 and picks up data from the DSP
tasks 1A and 1B, and outputs data to the distribution task. The weird part of the code is
that we need to push some data into the output channel end prior to starting the loop -
otherwise the data_distribution task would hang:

#define FILTERS2 1

static __attribute__((aligned(8))) int32_t filter_coeffs2[FILTERS2#5] = {
291645146, -504140302, 223757950, 504140302, -246967641,
H

static __attribute__((aligned(8))) int32_t filter_states2[NUM_OUTPUTS][FILTERS2#4];

void dsp_thread2(chanend_t c_fromla, chanend_t c_fromlb,
chanend_t c_todist) {
int from_1a[NUM_OUTPUTS];
int from_1b[NUM_OUTPUTS];
int for_usb[NUM_OUTPUTS];
chan_out_buf_word(c_todist, &for_usb[8], NUM_OUTPUTS); // Sample -2
chan_out_buf_word(c_todist, &for_usb[8], NUM_OUTPUTS); // Sample -1
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_fromla, &from_1a[8], NUM_OUTPUTS/2);
chan_in_buf_word(c_fromlb, &from_1b[8], NUM_OUTPUTS/2);

for_usb[0] = dsp_filters_biquads((int32_t) from_1a[@],
filter_coeffs2,
filter_states2[0],
FILTERS2,
28);

for_usb[1] = dsp_filters_biquads((int32_t) from_1b[@],
filter_coeffs2,
filter_states2[1],
FILTERS2,
28);

// And deliver my answer back
chan_out_buf_word(c_todist, &for_usb[6], NUM_OUTPUTS);

(continues on next page)

15 y,

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

}
}

The distributor picks up data from the USB stack, posts it to DSP task 0, and picks up an
answer from DSP task 2:
void dsp_data_distributor(chanend_t c_usb, chanend_t c_to®8, chanend_t c_from2) {

int for_usb [NUM_OUTPUTS + NUM_INPUTS];
int from_usb[NUM_OUTPUTS + NUM_INPUTS];

while(1) {
// First deal with the USB side
chan_in_buf_word(c_usb, &from_usb[0], NUM_OUTPUTS) ;
chan_in_buf_word(c_usb, &from_usb[NUM_OUTPUTS], NUM_INPUTS);
chan_out_buf_word(c_usb, &for_usb[0], NUM_OUTPUTS) ;

chan_out_buf_word(c_usb, &for_usb[NUM_OUTPUTS], NUM_INPUTS);
// Now supply output data to DSP task @
chan_out_buf_word(c_to®8, &from_usb[8], NUM_OUTPUTS);
// Now pick up data from DSP task 2
chan_in_buf_word(c_from2, &for_usb[8], NUM_OUTPUTS);
}
}

Finally, we need the code to start all the parallel threads. This code starts five tasks, and
connects them up using six channels:

DECLARE_JOB(dsp_data_distributor, (chanend_t, chanend_t, chanend_t));
DECLARE_JOB(dsp_thread®, (chanend_t, chanend_t, chanend_t));
DECLARE_JOB(dsp_threadla, (chanend_t, chanend_t));
DECLARE_JOB(dsp_thread1b, (chanend_t, chanend_t));
DECLARE_JOB(dsp_thread2, (chanend_t, chanend_t, chanend_t));

void dsp_main(chanend_t c_
channel_t c_dist_to_@
channel_t c_0_to_la
channel_t c_0@_to_1b
channel_t c_la_to_2
channel_t c_1b_to_2
channel_t c_2_to_dist
PAR_JOBS(

PJOB(dsp_data_distributor, (c_data, c_dist_to_@.end_a, c_2_to_dist.end_b)),

ata) {
chan_alloc();
chan_alloc();
chan_alloc();
chan_alloc();
chan_alloc();
chan_alloc();

wnn o n e

PJOB(dsp_thread®, (c_dist_to_@.end_b, c_@_to_la.end_a, c_8_to_1b.end_a)),
PJOB(dsp_threadla, (c_@_to_la.end_b, c_la_to_2.end_a)),
PJOB(dsp_thread1b, (c_@_to_1b.end_b, c_1b_to_2.end_a)),
PJOB(dsp_thread2, (c_la_to_2.end_b, c_1b_to_2.end_b, c_2_to_dist.end_a))
)

}

In order to show how this code works, we show a diagram in Timeline of the pipelined
example. Note that the distribution task is mostly idle; it ony consumes very little pro-
cessing in the beginning and the end of the sample-cycle. This means that five other
threads can be used to soak up the available DSP.

8 Optimised Data Pipelining DSP

Since we have the flexibility to choose the order of the communication processes in a
sample synchronous system, we can eliminate the DSP distribution thread.

We base the communication timing from the communication from the Buffer Manager
thread. DSP taskO receives a sample from the Buffer Manager thread. It then sends
data to DSP task 1A and DSP taskB in that order which is a sequence of three sequential
communication processes. DSP task? sends data to the Buffer Manager thread then
receives data from DSP task1A and DSP task1B in that order which is, again, a sequence
of three sequential communication processes. The communication to and from each
of DSP task1A and DSP taskl1B are adjacent. This pipeline completes the communica-
tion to and from each thread in the minimum possible time, maximising the instructions
available for the computation of the next samples.

The pipeline that we're building is shown in Example pipeline.

The pipeline that we are building requires a bit of plumbing to make it all work but the
code is reasonably straightforward otherwise.

DSP task 1B is implemented by dsp_thread1b and picks up data from the distributor,
and outputs data to dsp tasks 1A and 1B:

16 y,

Frame 5
arrives
Frame 1
departs

Frame 6
arrives
Frame 2
departs

Frame 7
arrives
Frame 3
departs

ANO02011: USB Audio with concurrent multi-threaded DSP

Jabeue)

Ja4ing

qliaisip dsd

0%s®e1 dSa

Y1Yse1 dsa

g1yser dsa
I ¢YSEY dSa

Sn G6/9°2¢

Note that the
size of a box
is not to scale
with the
execution time,

9%
issue-slots/

out |

1610
issue-slots/
instructions

Fig. 7: Timeline of the pipelined example

17

Fig. 8: Example pipeline

ANO02011: USB Audio with concurrent multi-threaded DSP

#define FILTERSO 1

static __attribute__((aligned(8))) int32_t filter_coeffs@[FILTERSO*5] = {
2615651108, -521424736, 260038367, 521424736, -253168021,

H
static __attribute__((aligned(8))) int32_t filter_states@[NUM_OUTPUTS][FILTERS@®*4];

void dsp_thread@(chanend_t c_fromusb,
chanend_t c_tola, chanend_t c_to1b) {
int from_usb[NUM_OUTPUTS];
int for_1[NUM_OUTPUTS];
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_fromusb, &from_usb[8], NUM_OUTPUTS);

for(int i = 0; i < NUM_OUTPUTS; i++) {
for_1[i] = dsp_filters_biquads((int32_t) from_usb[i],
filter_coeffs@,
filter_states@[i],
FILTERS®,
28);
}

// And deliver my answer back
chan_out_buf_word(c_tola, &for_1[8], NUM_OUTPUTS);
chan_out_buf_word(c_to1b, &for_1[8], NUM_OUTPUTS);

DSP task 1A is implemented by dsp_thread1a and picks up data from the DSP task 0,
and outputs data to dsp task 2:

#define FILTERS1a 2

/] b2/a@ b1/a@ be /a0 -al/a@ -a2/al

static __attribute__((aligned(8))) int32_t filter_coeffsla[FILTERSTa*5] = {
2615651108, -521424736, 260038367, 521424736, -253168021,
255074543, -506484921, 252105451, 506484921, -238744538,

b

static __attribute__((aligned(8))) int32_t filter_states1a[NUM_OUTPUTS/2][FILTERS1a*4];

void dsp_threadla(chanend_t c_frome,
chanend_t c_to2) {
int from_@[NUM_OUTPUTS];
int for_2[NUM_OUTPUTS/2];
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_from@, &from_8[8], NUM_OUTPUTS);

for(int i = 8; i < NUM_OUTPUTS/2; i++) {
for_2[i] = dsp_filters_biquads((int32_t) from_@[i],
filter_coeffsila,
filter_statesla[i],
FILTERS1a,
28);
}

// And deliver my answer back
chan_out_buf_word(c_to2, &for_2[8], NUM_OUTPUTS/2);

DSP task 1B is implemented by dsp_thread1b and picks up data from the DSP task O,
and outputs data to dsp task 2:

#define FILTERS1b 2

/1 b2/a@ b1/a@ be /a0 -al/a@ -a2/al

static __attribute__((aligned(8))) int32_t filter_coeffs1b[FILTERSTb*5] = {
280274501, -523039333, 245645878, 523039333, -257484924,
291645146, -504140302, 223757950, 504140302, -246967640,

H

static __attribute__((aligned(8))) int32_t filter_states1b[NUM_OUTPUTS/2][FILTERS1b*4];

void dsp_threadib(chanend_t c_frome,
chanend_t c_to2) {
int from_@[NUM_OUTPUTS];
int for_2[NUM_OUTPUTS/2];
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_from@, &from_8[8], NUM_OUTPUTS);

for(int i = @; i < NUM_OUTPUTS/2; i++) {
for_2[i] = dsp_filters_biquads((int32_t) from_@[i],
filter_coeffsib,
filter_statesib[i],
FILTERS1b,

(continues on next page)

18 y,

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

28);
}

// And deliver my answer back
chan_out_buf_word(c_to2, &for_2[8], NUM_OUTPUTS/2);

¥

Similarly, DSP task 2 is implemented by dsp_thread?2 and picks up data from the DSP
tasks 1A and 1B, and outputs data t the distribution task. The weird part of the code is
that we need to push some data into the output channel end prior to starting the loop -
otherwise the data_distribution task would hang:

#define FILTERS2 1

static __attribute__((aligned(8))) int32_t filter_coeffs2[FILTERS2%5] = {
291645146, -504140302, 223757950, 504140302, -246967641,
%

static __attribute__((aligned(8))) int32_t filter_states2[NUM_OUTPUTS][FILTERS2#4];

void dsp_thread2(chanend_t c_fromla, chanend_t c_fromib,
chanend_t c_todist) {
int from_1a[NUM_OUTPUTS];
int from_1b[NUM_OUTPUTS];
int for_usb[NUM_OUTPUTS];
chan_out_buf_word(c_todist, &for_usb[@], NUM_OUTPUTS); // Sample -2
chan_out_buf_word(c_todist, &for_usb[08], NUM_OUTPUTS); // Sample -1
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_fromla, &from_1a[8], NUM_OUTPUTS/2);
chan_in_buf_word(c_fromlb, &from_1b[8], NUM_OUTPUTS/2);

for_usb[0] = dsp_filters_biquads((int32_t) from_1a[@],
filter_coeffs2,
filter_states2([9],
FILTERS2,
28);

for_usb[1] = dsp_filters_biquads((int32_t) from_1b[@],
filter_coeffs2,
filter_states2[1],
FILTERS2,
28);

// And deliver my answer back
chan_out_buf_word(c_todist, &for_usb[0], NUM_OUTPUTS);

¥

The distributor picks up data from the USB stack, posts it to DSP task 0, and picks up an
answer from DSP task 2:
void dsp_data_distributor(chanend_t c_usb, chanend_t c_to8, chanend_t c_from2) {

int for_usb [NUM_OUTPUTS + NUM_INPUTS];
int from_usb[NUM_OUTPUTS + NUM_INPUTS];

while(1) {
// First deal with the USB side
chan_in_buf_word(c_usb, &from_usb[@], NUM_OUTPUTS) ;
chan_in_buf_word(c_usb, &from_usb[NUM_OUTPUTS], NUM_INPUTS);
chan_out_buf_word(c_usb, &for_usb[@], NUM_OUTPUTS) ;

chan_out_buf_word(c_usb, &for_usb[NUM_OUTPUTS], NUM_INPUTS);
// Now supply output data to DSP task @
chan_out_buf_word(c_to8, &from_usb[8], NUM_OUTPUTS);

// Now pick up data from DSP task 2

chan_in_buf_word(c_from2, &for_usb[8], NUM_OUTPUTS);

}

Finally, we need the code to start all the parallel threads. This code starts five tasks, and
connects them up using six channels:

DECLARE_JOB(dsp_data_distributor, (chanend_t, chanend_t, chanend_t));
DECLARE_JOB(dsp_thread®, (chanend_t, chanend_t, chanend_t));
DECLARE_JOB(dsp_threadla, (chanend_t, chanend_t));
DECLARE_JOB(dsp_thread1b, (chanend_t, chanend_t));
DECLARE_JOB(dsp_thread2, (chanend_t, chanend_t, chanend_t));

channel_t c_dist_to_@ = chan_alloc();
channel_t c_0_to_la chan_alloc();
channel_t c_@_to_1b chan_alloc();

void dsp_main(chanend_t c_data) {
channel_t c_la_to_2 =

chan_alloc();
(continues on next page)

19 y,

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

chan_alloc();

channel_t c_1b_to_2
chan_alloc();

channel_t c_2_to_dist

PAR_JOBS (
PJOB(dsp_data_distributor, (c_data, c_dist_to_@.end_a, c_2_to_dist.end_b)),

PJOB(dsp_thread®, (c_dist_to_@.end_b, c_0_to_la.end_a, c_8_to_1b.end_a)),
PJOB(dsp_threadla, (c_8_to_la.end_b, c_la_to_2.end_a)),
PJOB(dsp_threadlb, (c_8_to_1b.end_b, c_1b_to_2.end_a)),
PJOB(dsp_thread2, (c_la_to_2.end_b, c_1b_to_2.end_b, c_2_to_dist.end_a))

)i

}

In order to show how this code works, we show a diagram in Timeline of the pipelined
example.

[
w (= (=
) [wn wn o
= [92] O O (92)
o O vl
O o = —~+ —
g Eh 1) —+ Y I o
a - —+ QO w %) Qo
- 1) = = [
D = =~ N = =
= = o) > W N
I
Frame 5
arrives Key
Frame 1
departs I:l USB work
L
IN - Communication
(]
=
c - 125 handling
[
[<7) Note that the
Z:ﬁ eg issue-slots/ — size of a box
Frame 2 = is not to scale
departs @ with the
execution time,
1610
issue-slots/
instructions
Frame 7
arrives
Frame 3
departs

Fig. 9: Timeline of the pipelined example

9 Controlling

In order to control the DSP that you have inserted into the code (eg, volume control,
equaliser settings), you will need to be able to control values in the various DSP compo-
nents. Often this control happens asynchronous to the data pipeline, for example, some-
body may use a touch-screen to change the settings of an equaliser pipeline, as this
change happens outside the audio domain it is intrinsically asynchronous to it. Deciding
on how to synchronise the control with the audio stream affects how this is encoded in

the solution.

20 x

ANO02011: USB Audio with concurrent multi-threaded DSP

Factors affecting the decision on synchronisation may include:

The stability of the algorithms used. In particular, algorithms that use a feedback loop
such as an IIR may exhibit undesirable behaviour

Whether all elements of the pipeline are updated simultaneously or not
Whether all settings of a single algorithm are updated simultaneously or not.
The output of the DSP pipeline as a whole.

The desired speed at which the controls take effect.

We discuss a number of scenarios on how to update control-values, and conclude with
a comparison and trade-offs to be made.

9.1 Control values directly in unguarded shared memory

the easiest method is to store the settings in memory, and run an asynchronous thread
that has access to those variables. This asynchronous thread could be controlled from
an A/P (over, say, 12C or SPI), or it can interface directly with, for example, rotary encoders,
push buttons, sliders, or a touch screen. The variables in memory effectively become
control registers. As long as one side writes and the other side reads this is thread-safe.

For many applications this is an adequate solution. For example, when changing a mixer
setting, it does not really matter whether the setting is changed just before a sample is
processed or just after a sample is processed. However, in the case of changing the
values controlling an lIR, this method may not be adequate. The b0, b1, b2, a0, a1, and a2
values ought to be all changed simultaneously, as changing one value first may cause
the IIR to behave in unpredictable ways.

9.2 Control values in guarded shared memory

Anext stepisto place the values in shared memory, but to explicitly guard their use. Using
a lock for guarding it is not appropriate due to the real-time nature of the data-pipeline.
However, one can use one or more memory cells to state which set of parameters is now
valid, for example using a pointer or an index in an array. It is essential that both the old
values and the new values are available for some period of time, enabling the pipeline to
make the choice whether to apply the old or the new values.

This method still updates values asynchronously, but it is now in the hands of the DSP
pipeline whether to use the old or the new values. For example, a component that imple-
ments a bank of IIR filters may on receiving the new frame of data also lookup which set
of control values to use. It is either using or old values or all new values. It will be up to
the control thread to not make sudden changes that would destabilise the state of the
filter-bank, but there is a guarantee that all filter values are applied synchronously.

9.3 Passing control values along the DSP pipeline

A first-class method to solve this problem is to pass the control parameters along the
DSP pipeline together with the DSP samples. They can be passed by value or by refer-
ence, ie, a single pointer or even a single byte would be sufficient to inform each stage
of the pipeline as to what control parameters to use.

With this method, each sample is processed using a known set of control parameters
and the parameters are applied as a wave running through the DSP pipeline. The resyn-
chronisation of the control settings happens only once on entry to the pipeline. This
makes the pipeline itself operate synchronous with the control values.

21 4

ANO02011: USB Audio with concurrent multi-threaded DSP

9.4 Comparison of control methods

In all cases control values have to be distributed over the various DSP components; this
can always take place through shared memory. The difference is the method by which
the DSP component knows which settings to use. In one extreme the DSP component
uses directly the only settings that it can observe; on the other extreme, the DSP is given
directions to use a specific set of settings with each frame of audio data that arrives. The
other methods offer gradually more control over the synchronisation between the audio
pipeline and the control settings.

»MOS

Copyright © 2025, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd. makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries and may not be used without written permission. Company and product names mentioned in this document
are the trademarks or registered trademarks of their respective owners.

22 y,

	Introduction
	DSP Pipelines
	Introduction to USB Audio
	Executing the DSP on the other physical core
	Parallelising DSP
	Data Parallel DSP
	Data Pipelining DSP
	Optimised Data Pipelining DSP
	Controlling

