lib_uart: UART peripheral library

Publication Date: 2025/6/25
Document Number: XM-006381-UG v3.2.0

XMOS

lib_uart: UART peripheral library

IN THIS DOCUMENT

1 Inroduction 2
1.1 lib_uartcomponents 3

12 Using lib_uart 3

2 External signal description 3
21 Connectingtothexcoredevice 3

3 Usage . . . 6
3.1 Standard UART USage 6

311 UART configuration 7

312 Transmitbufferingo 7

32 Fast/Streaming UART usage 8

33 Half-duplex UART Usage i 9

34 MultiFUART Usage 10

3.41 Configuring clocks for multi-UARTs n

342 Runtime configuration of the Multi-UARTs 12

4 Examples 12
41 Basic and Streaming UART examples 12

42 Multi-UART example 12

4.3 Runningtheexamples 12

431 Building 12

432 Running the applicationo o oL 13

5 UART APIs . . o 13
5.1 Standard UART APl o 13

511 UART configurationinterface 13

512 UART receivercomponent 15

513 UART receiveinterface 16

514 UART transmitter components 17

515 UART transmitinterface 18

516 UART transmit interface (buffered) 18

52 Fast/Streaming APl 19

521 Streamingreceiver L L L Lo Lo Lo 19

522 Streaming transmitter o ..o 20

53 Half-Duplex APl 21

531 Half-duplexcomponent 21

532 Half-duplex controlinterface 21

54 MultFUART APL . o o o 22

541 Multi-UART receiver L oL 22

54.2 Multi-UART receive interface 23

543 Multi-UART transmitter oL oo 25

5.4.4 Multi-UART transmitinterface 26

1 Inroduction

A software defined, industry-standard, UART (Universal Asynchronous Receiver/Trans-
mitter) library that allows the user to control a UART serial connection via the xcore GPIO
ports. This library is controlled via XC using the XMOS multicore extensions.

lib_uart: UART peripheral library

1.1 1lib_uart components

There are four ways to use the UART library detailed in the table below.

UART type Description

Standard Standard UARTs provide a flexible, fully configurable UART for
speeds up to 115200 baud. The UART connects to ports via the GPIO
library so can be used with single bits of multi-bit ports. Transmit
can be buffered or unbuffered. The UART components run on a log-
ical core but are combinable so can be run with other tasks on the
same core (though the timing may be affected).

Fast/stream- The fast/streaming UART components provide a fixed configuration

ing fast UART that streams data in and out via a streaming channel.

Half-duplex The half-duplex component performs receive and transmit on the
same data line. The application controls the direction of the UART
at runtime. It is particularly useful for RS485 connections.

Multi-UART The multi-UART components efficiently run several UARTS on the
same core using a multibit port.

1.2 Using lib_uart

lib_uart is intended to be used with the XCommon CMake , the XMOS application
build and dependency management system.

To use this library, include 1ib_uart in the application’s APP_DEPENDENT_MODULES
list in CMakeLists.txt, for example:

set(APP_DEPENDENT_MODULES "lib_uart")

Applications should then include the uart . h header file.
2 External signal description

The UART signals used by the library are high in their idle state. The transmission of
a character start with a start bit when the line transitions from high to low. Then the
data bits of the character are then transmitted followed by an optional parity bit and a
number of stop bits (where the line is driven high). This sequence is shown in UART data
sequence. The data is driven least significant bit first.

UART 77 \ /b0 N b1 ¥ bz ¥ b3 f bs K b5 N b6 X br K paiy] \ i

Fig. 1. UART data sequence

The start bit, data bits, parity bit and stop bits are all the same length (tBIT in UART data
sequence). This length is give by the BAUD rate which is the number of bits per second.

2.1 Connecting to the xcore device

If using the standard UART Rx/Tx components then the UART line can be connected to
a bit of any port. The other bits of the port can be shared using the GPIO library. Please
refer to the GPIO library user guide for restrictions on sharing bits of a port (for example,
all bits of a port need to be in the same direction - so UART rx and UART tx cannot be put
on the same port, see UART Rx and Tx connections).

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

xCORE device

n-bit
port

UART rx

lib_uart: UART peripheral library

xCORE device

n-bit
port

UART tx

Fig. 2: UART Rx and Tx connections

The half duplex UART needs to be connected to a 1-bit port (UART half duplex connection).

xCORE device

1-bit | | UART

port

Fig. 3: UART half duplex connection

The fast/streaming UART also needs to be connect to a 1-bit port for TX or RX
(Fast/Streaming UART connections).

xCORE device

1-bit
port

UART rx

xCORE device

1-bit
port

UART tx

Fig. 4: Fast/Streaming UART connections

lib_uart: UART peripheral library

The multi-UARTSs need to be connected to 8-bit ports. If fewer than 8 UARTSs are required
then an 8-bit port must still be used with some of the pins of the port not connected
(Multi UART connections).

xCORE device

UARTT rx
UART2 rx
8-bit
port
UART8 rx
UART clock

1-bit
port

xCORE device

UARTT tx
UART2 tx
8-bit
port
UARTS8 tx

1-bit
port

Fig. 5: Multi UART connections

UART clock (optional)

For multi-UART receive, an incoming clock is required to acheive standard baud rates.
The clock should be a multiple of the maximum BAUD rate required e.g. a 1843200 Hz
oscillator is a multiple of 115200 baud (and lower rates also). The maximum allowable
incoming signal is 1843200 Hz.

For multi-UART transmit, an incoming clock can also be used. The same clock signal
can be shared between receive and transmit (i.e. only a single 1-bit port need be used).

lib_uart: UART peripheral library

3 Usage

The following sections describe the four ways to use the UART library.

3.1 Standard UART usage

UART components are instantiated as parallel tasks that runin a par statement. The ap-
plication can connect via an interface connection using the uart_rx_if (for the UART
Rx component) or the uart_tx_if (for the UART Tx component), see UART task dia-
gram for details. Both components also have an optional configuration interface that lets
the application change the speed and properties of the UART at run time.

data_ready(] notification
vart_rx_if vart_tx_if
u

vart_config_if (optional) art_config_if (optional)

Uart RX task layout Uart TX task layout

Fig. 6: UART task diagram

For example, the following code instantiates a UART rx and UART tx component and
connects to them:

// Port declarations
port p_uart_rx = on tile[8] : XS1_PORT_1A;
port p_uart_tx = on tile[8] : XS1_PORT_1B;

#define RX_BUFFER_SIZE 20

int main() {
interface uart_rx_if i_rx;
interface uart_tx_if i_tx;
input_gpio_if i_gpio_rx[1];
output_gpio_if i_gpio_tx[1];
par {
on tile[0]: output_gpio(i_gpio_tx, 1, p_uart_tx, null);
on tile[0]: uart_tx(i_tx, null,
115200, UART_PARITY_NONE, 8, 1,
i_gpio_tx[6]);
on tile[@8].core[B] : input_gpio_with_events(i_gpio_rx, 1, p_uart_rx, null);
on tile[@8].core[@] : uart_rx(i_rx, null, RX_BUFFER_SIZE,
115200, UART_PARITY_NONE, 8, 1,
i_gpio_rx[6]);
on tile[0]: app(i_tx, i_rx);

return 0;

The output_gpio task and input_gpio_with_events tasks are part of the GPIO
library for flexible use of multi-bit ports. See the GPIO library user guide for details.

The application can use the client end of the interface connection to perform UART op-
erations e.g.

void my_application(client uart_tx_if uart_tx,
client uvart_rx_if uart_rx) {
// Write a byte to the UART
uart_tx.write(0xff);

// Wait for a byte to
select {

case o 3
uint8_t data = uart_rx.read();
printf("Data received %d\n", data);
7 o0
break;

https://www.xmos.com/file/lib_gpio

lib_uart: UART peripheral library

3.1.1 UART configuration

The uart_config_if connection can be optionally connected to either the UART Rx
or Txtaske.g.

M oo
interface uvart_tx_if i_tx;
interface uart_cfg_if i_tx_cfg;
input_gpio_if i_gpio_rx[1];
par {
/AT
on tile[0]: uart_tx(i_tx, i_tx_cfg,
115200, UART_PARITY_NONE, 8, 1,
i_gpio_tx[6]);
on tile[@]: app(i_tx, i_rx_cfg);
M ooo

The application can use this interface to dynamically reconfigure the UART e.g.:

void app(client uart_tx_if uart_tx,
client uart_config_if uart_tx_cfg) {
// Configure the UART to 9600 BAUD
uart_tx_cfg.set_baud_rate(9600);
// Write to the UART
uart_tx.write(0xff);
M oco

If runtime configuration is not required then null can be passed into the task instead of
an interface connection.

3.1.2 Transmit buffering
There are two types of standard UART tx task: buffered and un-buffered.

The buffered UART will buffer characters written to the UART. It requires a separate log-
ical core to feed characters from the buffer to the UART pin. This frees the applica-
tion to perform other processing. The buffered UART will inform the application that
data has been transmitted and that there is more space in the buffer by calling the
ready_to_transmit() notification.

The unbuffered UART does not take its own logical core but calls to write will block
until the character has been sent.

lib_uart: UART peripheral library

3.2 Fast/Streaming UART usage
The fast/streaming UART components are instantiated as parallel tasks that run in a

par statement and connected to the application via streaming channels (Fast/streaming
UART task diagram).

UART UART
@ streaming channel @ @ streaming channel @

Streaming Uart RX Streaming Uart TX
task layout task layout

Fig. 7: Fast/streaming UART task diagram

For example, the following code instantiates a strreaming UART rx and UART tx compo-
nent and connects to them:

// Port declarations
in port p_uart_rx = on tile[8] : XS1_PORT_1A;
out port p_uart_tx = on tile[@] : XS1_PORT_1B;

#define TICKS_PER_BIT 20

int main() {

streaming chan c_rx;

streaming chan c_tx;

par {
on tile[0]: uart_tx_streaming(p_uart_tx, c_tx, TICKS_PER_BIT);
on tile[0]: uart_rx_streaming(p_uart_rx, c_rx, TICKS_PER_BIT);
on tile[@8]: app(c_tx, c_rx);

¥

return 0;

¥

The streaming channel has a limited amount of buffering (~8 characters) but in general
the application must deal with incoming data as soon as it arrives.

The application can interact with the component using the fast/streaming UART func-
tions (see Fast/Streaming API) e.g..

void app(streaming chanend c_tx, streaming chanend c_rx)

uart_tx_streaming_write_byte(c_tx, 0Oxff);
uint8_t byte;
uart_rx_streaming_read_byte(c_rx, byte);
printf("Received: %d\n", byte);

lib_uart: UART peripheral library

3.3 Half-duplex UART usage

The half-duplex components are instantiated as parallel tasks that run in a par state-
ment. The application connects via three interface connections: the uart_rx_if (for
receiving data), the uart_tx_if (for transmitting data) and the uart_control_if
(for controlling the current direction of the UART)(Half-duplex UART task diagram). The
component also has an optional configuration interface that lets the application change
the speed and properties of the UART at run time.

vart_rx_if

vart_tx_buffered_if

Half-duplex
UART

vart_control_if

app

vart_config_if (optional)

Fig. 8: Half-duplex UART task diagram

For example, the following code instantiates a half-duplex UART component and con-
nects to it:

#define TX_BUFFER_SIZE 16
#define RX_BUFFER_SIZE 16

port p_uart = on tile[B] : XST_PORT_1A;

int main() {
interface uart_rx_if i_rx;
interface uart_control_if i_control;
interface uart_tx_buffered_if i_tx;

ar {

on tile[0] : uart_half_duplex(i_tx, i_rx, i_control, null,
TX_BUFFER_SIZE, RX_BUFFER_SIZE,
115200, UART_PARITY_NONE, 8, 1, p_uart);

on tile[@8] : app(i_rx, i_tx, i_control);

The application can use the interfaces in the same manner as a standard UART. The
control interface can be used to change direction e.g.:

void app(client vart_rx_if i_uart_rx,
client uart_tx_buffered_if i_uart_tx,
client uart_control_if i_control) {
uint8_t byte;
i_control.set_mode(UART_RX_MODE) ;
byte = i_uart_rx.read();
i_control.set_mode(UART_TX_MODE) ;
i_uart_tx.write(byte);

lib_uart: UART peripheral library

3.4 Multi-UART usage

Multi-UART components are instantiated as parallel tasks that run in a par state-
ment. The application can connect via a combination of a channel and an inter-
face connection using the multi_uart_rx_if (for the UART Rx component) or the
multi_uart_tx_if (for the UART Tx component). These interfaces handle data for
all the UARTSs and runtime configuration (Multi-UART task diagram).

Multi- Multi-
app / multi_vart_rx_if > UART app multi_vart_tx_if > UART
streaming channel channel
Multi-UART RX task Multi-UART TX task
layout layout

Fig. 9: Multi-UART task diagram

For example, the following code instantiates a multi-UART RX and multi-UART TX com-
ponent and connects to them:

in buffered port:32 p_uart_rx = XS1_PORT_8A;
out buffered port:8 p_uart_tx = XS1_PORT_8B;
in port p_uart_clk = XS1_PORT_1F;

clock clk_uart = XS1_CLKBLK_4;
int main(void)

interface multi_uart_rx_if i_rx;
streaming chan c_rx;

chan c_tx;

interface multi_uart_tx_if i_tx;

// Set the rx and tx lines to be clocked off the clk_uart clock block
configure_in_port(p_uart_rx, clk_uart);
configure_out_port(p_uart_tx, clk_uart, 9);

// Configure an external clock for the clk_uart clock block
configure_clock_src(clk_uart, p_uart_clk);
start_clock(clk_uart);

// Start the rx/tx tasks and the application task
par {
multi_uart_rx(c_rx, i_rx, p_uart_rx, 8, 1843200, 115200, UART_PARITY_NONE, 8, 1);
multi_uart_tx(c_tx, i_tx, p_uart_tx, 8, 1843200, 115200, UART_PARITY_NONE, 8, 1);
app(c_rx, i_rx, c_tx, i_tx);

10 y,

lib_uart: UART peripheral library

The application communicates with all the UARTSs via the single multi-UART interfaces
e.g.

void loopback(streaming chanend c_rx, client multi_uart_rx_if i_rx,
chanend c_tx, client multi_uart_tx_if i_tx)
{

size_t uart_num;

// Configure each task with a chanend
i_rx.init(c_rx);
i_tx.init(c_tx);

while (1) {
select {
case ()):
uint8_t data;
if (i_rx.read(uart_num, data) == UART_RX_VALID_DATA) {
if (i_tx.is_slot_free(uart_num)) {
i_tx.write(uart_num, data);

i

else {
debug_printf("Warning: TX buffer overflow on channel %d\n",
uart_num) ;
}
}
break;

Note that the init function on the interface must be called once before any use of the
interface.

3.4.1 Configuring clocks for multi-UARTs

The ports used for the multi-UART components need to have their clocks configured. For
example, the following code configures the multi-UART RX port to run of a clock that is
sourced by an incoming port:

// Set the rx line to be clocked off the clk_uart clock block

configure_in_port(p_uart_rx, clk_uart);

// Configure an external clock for the clk_uart clock block
configure_clock_src(clk_uart, p_uart_clk);
start_clock(clk_uart);

For more information on configuring ports, please refer to the XMOS Programming Guide
for more details.

The multi-UART components take an argument which is the speed of the underlying
clock. This way the component can attain the correct BAUD rate.

The multi-UART RX component must be clocked of a rate which is a multiple of the BAUD
rates required.

If a port is not explicitly configured, then it will be clocked of the reference 100Mhz clock
of the xcore. The TX component can also work with this clock rate.

1 y,

lib_uart: UART peripheral library

3.4.2 Runtime configuration of the Multi-UARTs

The re-configuration of a one of the UARTS in the multi-UART is done via the main
multi_uart_tx_if ormulti_uart_rx_if. In both cases, the user must call the
pause function of the interface, then a reconfiguration function and then the restart
function e.g.:
void app(streaming chanend c_rx, client multi_uart_rx_if i_rx)

/...

i_rx.pause();

// Set UART number 2 to baud rate 9600

i_rx.set_baud_rate(2, 9600);

i_rx.restart();
M ooo

4 Examples

Various example application are provided alongside the 1ib_uart which demonstrates
the use of the different UART components. These examples can be found in the
examples directory of the library. All examples provided run on XK-EVK-XU316 board.

4.1 Basic and Streaming UART examples

The basic and streaming UART examples demonstrate the use of the API to loopback
data between the UART Tx and Rx components. The examples are designed to be run
on a single tile with the UART connection between the XST_PORT_1J and XST_PORT_1TM
ports (shared with WIFI MOSI and WIFI MISO on XK-EVK-XU316). So make sure to connect
these pins with a jumper wire for the example to work.

4.2 Multi-UART example

The multi-UART example demonstrates the use of the multi-UART API to loopback data
between multi-UART Tx and Rx components . This example requires two 8-bit ports and
a shared clock. The ports chosen are XST_PORT_8B ontile 0 (X0D14 - X0D21in the top left
header) and XST_PORT_8A on tile 1 (X1D02 - X1D08 in the bottom left header and CODEC
RST_N whichis X1D09). The application will generate a PLL clock on MCLK (X1D17) which
needs to be shared with tile 0 XST_PORT_TA (X0DO0O0) port. Make sure to connect 8-bit
ports and the share the clock for the example to work.

4.3 Running the examples

This section will describe how to build and run the example applications provided with
the 1ib_uart library. The application chosen for this section is the app_uart_demo
which demonstrates the use of the standard UART API. For other examples, the process
is similar, but the application/folder name will change.

4.3.1 Building

The following section assumes that the XMOS XTC tools has been downloaded and in-
stalled (see README for required version).

Installation instructions can be found here. Particular attention should be paid to the
section Installation of required third-party tools.

The application uses the XMOS build and dependency system, xcommon-cmake.
xcommon-cmake is bundled with the XMOS XTC tools.

To configure the build, run the following from an XTC command prompt:

12 y,

https://www.xmos.com/xk-evk-xu316
https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_uart: UART peripheral library

cd examples
cd app_uart_demo
cmake -G "Unix Makefiles" -B build

Any missing dependencies will be downloaded by the build system at this configure step.

Finally, the application binaries can be built using xmake:

xmake -j -C build

4.3.2 Running the application

To run the application return to the /examples/app_uart_demo directory and run the
following command:

xrun --xscope bin/app_uart_demo.xe

As application runs and loopbacks data between the UART Tx and Rx components, it will
print the received data to the console.

5 UART APIs

5.1 Standard UART API

5.1.1 UART configuration interface
group Uart_config_if
UART configuration interface.

This interface enables dynamic reconfiguration of a UART. It is used by several
UART components to provide a method of configuration.

Functions

void set_baud_rate(unsigned baud_rate)
Set the baud rate of a UART.
void set_parity(enum vart_parity_t parity)
Set the parity of a UART.
void set_stop_bits(unsigned stop_bits)
Set number of stop bits used by a UART.
void set_bits_per_byte(unsigned bits_per_byte)
Set number of bits per byte used by a UART (must be in the range [1-8])

enumuart_parity_t
Type representing the parity of a UART
Values:

enumerator UART_PARITY_EVEN
Even parity.

enumerator UART_PARITY_ODD
0dd parity.

13 y,

14

enumerator UART_PARITY_NONE
No parity.

lib_uart: UART peripheral library

lib_uart: UART peripheral library

5.1.2 UART receiver component

void uart_rx(

15

SERVER_INTERFACE(uart_rx_if, i_data), SERVER_NULLABLE_INTERFACE(uart_config_if,
i_config), const_static_unsigned buffer_size, unsigned
baud, enum uart_parity_t parity, unsigned bits_per_byte, unsigned
stop_bits, CLIENT_INTERFACE(input_gpio_if, p_rxd),

UART RX.

This function runs a uart receiver. Bytes received by the this task are buffered.
When the buffer is full further incoming bytes of data will be dropped. The function
never returns and will run indefinitely.

Parameters

» i_data — the interface connection allowing clients to receive
data

» i_config — the interface connection allowing clients to recon-

figure the UART

buffer_size - the size of the buffer

baud - the initial baud rate

parity - the initial parity setting

bits_per_byte - theinitial number of bits per byte (must be in

the range [1-8])

stop_bits - theinitial number of stop bits

p_rxd — the gpio interface to input data on

vVvyyvyy

vy

lib_uart: UART peripheral library

5.1.3 UART receive interface

group Uart_rx_if

16

UART RX interface.
This interface provides clients access to buffer uart receive functionality.

Functions

uint8_t read (void)

Get a byte from the receive buffer.
This function should be called after receiving a data_ready() notification. If
these is no data in the buffer (for example, this function is called before re-
ceiving a notification) then the return value is undefined.

void data_ready(void)
Notification that data is in the receive buffer.
This notification function can be selected on by the client and will event when
theis data in the receive buffer. After this notification the client should call the
read() function.

inthas_data()
Returns whether there is data in the buffer.

inline uint8_t wait_for_data_and_read (CLIENT_INTERFACE(uart_rx_if, i))
Get a byte from the receive buffer.
This function will wait until there is data in the receive buffer of the uart and

then fetch that data. On getting the data, it will clear the notification flag on
the interface.

lib_uart: UART peripheral library

5.1.4 UART transmitter components

void uart_tx(
SERVER_INTERFACE (uart_tx_if, i_data), SERVER_NULLABLE_INTERFACE(uart_config_if,
i_config), unsigned baud, vart_parity_t parity, unsigned bits_per_byte, unsigned
stop_bits, CLIENT_INTERFACE(output_gpio_if, p_txd),

UART transmitter.
This function implements an unbuffered UART transmitter.

Parameters

i_data - interface enabling client to send data

i_config - interface enabling client to configure the UART
baud - the initial baud rate

parity - the initial parity setting

bits_per_byte - theinitial number of bits per byte (must be in
the range [1-8])

stop_bits - theinitial number of stop bits

p_txd — the gpio interface to output data on

VVvVVyYVYY

vy

void uart_tx_buffered(
SERVER_INTERFACE(uart_tx_buffered_if, i_data), SERVER_NULLABLE_INTERFACE(uart_config_if,
i_config), const_static_unsigned buffer_size, unsigned
baud, vart_parity_t parity, unsigned bits_per_byte, unsigned
stop_bits, CLIENT_INTERFACE(output_gpio_if, p_txd),

UART transmitter (buffered).

This function implements a UART transmitter. Data sent to the task will be placed
in a buffer and sent at the rate of the UART.

Parameters

i_data - interface enabling client to send data

i_config - interface enabling client to configure the UART
buffer_size - the size of the transmit buffer in bytes

baud - the initial baud rate

parity - the initial parity setting

bits_per_byte - theinitial number of bits per byte (must be in
the range [1-8])

stop_bits — theinitial number of stop bits

p_txd - the gpio interface to output data on

VVVYVYYVYY

vy

17 y,

lib_uart: UART peripheral library

5.1.5 UART transmit interface

group Uart_tx_if

UART transmit interface.
This interface provides functions for transmitting data on an unbuffered UART.

Functions

void write (uint8_t data)

Write a byte to a UART.

This function writes a byte of data to a UART. It will output immediately and
block until the data is output.

Write a byte to a UART.

This function writes a byte of data to a UART. It will place the data in the out-
put buffer queue to write and then return. If the buffer is full then the data is
discarded.

Parameters

» data — The data to write.
» data — The data to write.
Returns
Zero if the write was successful. If the buffer was full then the
function will return 1 and the data is discarded.

5.1.6 UART transmit interface (buffered)

group Uart_tx_buffered_if

18

UART transmit interface (buffered).

This interface contains functions to write to a buffered UART and manage the
buffering.

Functions

void ready_to_transmit(void)
Ready to transmit notification.
This notification will occur when the UART is ready to transmit (either intially
or after a write() call when there is space in the buffer).
size_t get_available_buffer_size(void)
Get avaiable buffer size.

This function returns the number of bytes remaining in the buffer that can be
filled by write() calls.

lib_uart: UART peripheral library

5.2 Fast/Streaming API

5.2.1 Streaming receiver

void uart_rx_streaming(in_port_t p, streaming_chanend_t c, int ticks_per_bit)
Fast/Streaming UART RX.
This function implements a fast UART. The UART configuration is fixed to a single
start bit, 8 bits per byte, and a single stop bit. On a 62.5 MIPS thread this func-
tion should be able to keep up with a 10 MBit UART sustained (provided that the
streaming channel can keep up with it too).

This function does not return.

Parameters

» p — input port, 1 bit port on which data comes in.

» c — output streaming channel to connect to the application.

» ticks_per_bit - number of clock ticks between bits. This
number depends on the clock that is attached to port p. If it is
the 100 Mhz reference clock then this value should be at least 10.

void uart_rx_streaming_read_byte(
streaming_chanend_t ¢, REFERENCE_PARAM(uint8_t, data),
)

Receive a byte from a streaming UART receiver.

This function receives a byte from the fast/streaming UART component. It is “se-
lect handler” so can be used within a select e.g.

uint8_t byte;
size_t index;
select {
case uart_rx_streaming_receive_byte(c, byte):
// use sample and index here...

B}éak;

The case in this select will fire when the UART component has data ready.

Parameters
» ¢ — chanend connected to the streaming UART receiver compo-

nent
» data — This reference parameter gets set with the incoming data

19 y,

lib_uart: UART peripheral library

5.2.2 Streaming transmitter

void uart_tx_streaming(out_port_t p, streaming_chanend_t ¢, int ticks_per_bit)

Fast/Streaming UART TX.

This function implements a fast UART transmitter. It needs an unbuffered 1-bit
port, a streaming channel end, and a number of port-clocks to wait between bits. It
receives a start bit, 8 bits, and a stop bit, and transmits the 8 bits over the streaming
channel end as a single token. On a 62.5 MIPS thread this function should be able
to keep up with a 10 MBit UART sustained (provided that the streaming channel
can keep up with it too).

This function does not return.

Parameters

» p — input port, 1 bit port on which data comes in.

» c — output streaming channel to connect to the application.

» ticks_per_bit - number of clock ticks between bits. This
number depends on the clock that is attached to port p. If it is
the 100 Mhz reference clock then this value should be at least 10.

void uart_tx_streaming_write_byte(streaming_chanend_t c, uint8_t data)

20

Write a byte to a streaming UART transmitter.
This function writes a

Parameters

» ¢ — chanend connected to the streaming UART Tx component
» data - The data to send.

lib_uart: UART peripheral library

5.3 Half-Duplex API

5.3.1 Half-duplex component

void uart_half_duplex(
SERVER_INTERFACE(uart_tx_buffered_if, i_tx), SERVER_INTERFACE(uart_rx_if,
i_rx), SERVER_INTERFACE(uart_control_if, i_control), SERVER_NULLABLE_INTERFACE(uart_config_if,
i_config), const_static_unsigned tx_buf_length, const_static_unsigned
rx_buf_length, unsigned baud, vart_parity_t parity, unsigned
bits_per_byte, unsigned stop_bits, port p_uart,

Half duplex UART.

This function implements a UART that can either transmit or receive on the same
wire. The application explicitly control whether the component is in transmit or
receive mode.

Parameters
» i_tx - interface for transmitting data
» i_rx — interface for receiving data
» i_control - interface for controlling the direction of the UART
» i_config - interface for configuring the UART
» tx_buf_length - the size of the transmit buffer (in bytes)
» rx_buf_length — the size of the receive buffer (in bytes)
» baud - baud rate
» parity - the parity of the UART
» bits_per_byte - bits per byte (must be in the range [1-8])
» stop_bits — The number of stop bits
» p_uart - the 1-bit port to send/recieve the UART signals.

5.3.2 Half-duplex control interface

enum uart_half_duplex_mode_t

Type representing the mode (direction) of a uart.
Values:

enumerator UART _RX_MODE
Uart is in receive mode.

enumerator UART_TX_MODE
Uart is in transmit mode.

group Uart_control_if
Interface to control the mode of a half-duplex UART

Functions

void set_mode (uart_half_duplex_mode_t mode)
Set the mode of the UART.

This function can be used to control whether the UART is in send or receive
mode.

21 y,

lib_uart: UART peripheral library

5.4 Multi-UART API

5.4.1 Multi-UART receiver
void multi_uart_rx(
streaming_chanend_t ¢, SERVER_INTERFACE(multi_uart_rx_if,
i), in_buffered_port_32_t p, clock clk, size_t num_uarts, unsigned
clock_rate_hz, unsigned baud, enum vart_parity_t parity, unsigned
bits_per_byte, unsigned stop_bits,
)
Multi-UART receiver.
This function implements multiple UART receivers on a multi-bit port. The UARTS
all have the same baud rate. The parity, bits per byte and number of stop bits is the
same for all UARTs and cannot be changed dynamically.
Parameters
» ¢ — achanend used internally for high speed communication
» i - theinterface for getting data from the task
» p — the multibit port
» clk - a clock block for the component to use. This needs to be
settorun of the reference clock (the default state for clock blocks)
» num_uarts — the number of uarts to run (must be less than or
equal to the width of p)
» clock_rate_hz - the clock rate in Hz
» baud - baud rate
» parity - the parity of the UART
» bits_per_byte — bits per byte (must be in the range [1-8])
» stop_bits — number of stop bits
22

lib_uart: UART peripheral library

5.4.2 Multi-UART receive interface

enummulti_uart_read_result_t
Values:

enumerator UART_RX_VALID_DATA
Data received is valid.

enumerator UART_RX_INVALID_DATA
Data received is not valid.

group Multi_uart_rx_if
Multi-UART receive interface

Functions

void init (streaming_chanend_t ¢)
Initialize the multi-UART RX component.
Parameters

» ¢ — The chanend connected to the multi-UART RX task

enum multi_uart_read_result_t read (
size_t index, REFERENCE_PARAM(uint8_t, data),
)

Read a byte for the next UART with ready data.

This function will read out a byte from the next UART with data available. If
several UARTS have data available then the data is read out in a round-robin
fashion.

Parameters

» index - This index of the UART to read from
» data — The data byte read

Returns
An enum type that indicates if the data is valid

void pause (void)
Pause the multi-UART RX component for reconfiguration.

This call will stop the mulit-UART component so that the UARTs can be recon-
figured.

void restart(void)
Restart the multi-UART RX component after reconfiguration.
This call will restart the multi-UART component.

void set_baud_rate(size_t index, unsigned baud_rate)

Set the baud rate of a UART.
This call will set the baud rate of one of the UARTs. The rate must be a divisor
of the clock rate of the underlying clock used for the component.

Set the baud rate of a UART.
This call will set the baud rate of one of the UARTs. The rate must be a divisor
of the clock rate of the underlying clock used for the component.

Parameters

23 y,

24

lib_uart: UART peripheral library

» index — The index of the UART to configure
» baud_rate — The required baud rate
» index — The index of the UART to configure.
» baud_rate — The required baud rate

void set_parity(size_t index, enum vart_parity_t parity)

Set parity of a UART.

This call will set the parity of one of the UARTs. The rate must be a divisor of
the clock rate of the underlying clock used for the component.

Parameters

» index — The index of the UART to configure.
» parity - The required parity
void set_stop_bits(size_tindex, unsigned stop_bits)
Set the number of stop bits of a UART.
This call will set the number of stop bits of one of the UARTS.
Parameters

» index — The index of the UART
» stop_bits — The number of stop bits

void set_bits_per_byte(size_t index, unsigned bits_per_byte)
Set the number of bit per byte of a UART.
This call will set the number of stop bits of one of the UARTS.
Parameters

» index — The index of the UART
» bits_per_byte — The number of bits per byte (must be in
the range [1-8])

lib_uart: UART peripheral library

5.4.3 Multi-UART transmitter

void multi_uart_tx(

25

chanend ¢, SERVER_INTERFACE(multi_uart_tx_if, i),out_port_t p,size_t
num_uarts, unsigned clock_rate_hz, unsigned baud, vart_parity_t par-
ity, unsigned bits_per_byte, unsigned stop_bits,

Multi-UART transmitter.

This function implements multiple UART transmiiters on a multi-bit port. The
UARTS all have the same baud rate. The parity, bits per byte and number of stop
bits is the same for all UARTs and cannot be changed dynamically.

Parameters

¢ — a chanend used internally for high speed communication

i — the interface for sending data to the task

p — the multibit port

num_uarts — the number of uarts to run (must be less than or
equal to the width of p)

clock_rate_hz - the clock rate in Hz

baud - baud rate

parity — the parity of the UART

bits_per_byte - bits per byte (must be in the range [1-8])
stop_bits — number of stop bits

vvyyvyy

vVVvVvyvyYy

lib_uart: UART peripheral library

5.4.4 Multi-UART transmit interface

group Multi_uart_tx_if
Multi-UART transmit interface

Functions

void init(chanend c)
Initialize the multi-UART TX component.
Parameters

» ¢ — The chanend connected to the multi-UART TX task
intis_slot_free(size_tindex)
Check whether transmit slot is free.

This function checks whether the application can write data to a specific
UART.

Parameters

» index — The index of the UART to check
Returns
non-zero if the slot is free (i.e. data can be sent)
void write(size_t index, uint8_t data)
Write to a UART.

This function writes a byte of data to a UART. This byte will be buffered to
send. If the transmit buffer for that UART is not available then the data is
ignored (use is_tx_slot_free() to determine availability).

Parameters

» index — The index of the UART to write to
» data — The data to write

2 MOS

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any

claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this

document are the trademarks or registered trademarks of their respective owners.

26 y,

	Inroduction
	lib_uart components
	Using lib_uart

	External signal description
	Connecting to the xcore device

	Usage
	Standard UART usage
	UART configuration
	Transmit buffering

	Fast/Streaming UART usage
	Half-duplex UART usage
	Multi-UART usage
	Configuring clocks for multi-UARTs
	Runtime configuration of the Multi-UARTs

	Examples
	Basic and Streaming UART examples
	Multi-UART example
	Running the examples
	Building
	Running the application

	UART APIs
	Standard UART API
	UART configuration interface
	UART receiver component
	UART receive interface
	UART transmitter components
	UART transmit interface
	UART transmit interface (buffered)

	Fast/Streaming API
	Streaming receiver
	Streaming transmitter

	Half-Duplex API
	Half-duplex component
	Half-duplex control interface

	Multi-UART API
	Multi-UART receiver
	Multi-UART receive interface
	Multi-UART transmitter
	Multi-UART transmit interface

